989 resultados para Root Zone Temperature


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Black polyethylene plastic mulch provides many benefits to fruit and vegetable producers. It increases earliness by increasing spring soil temperatures, conserves soil moisture, and reduces pesticide usage by decreasing weed and disease pressure. Furthermore, during seasons of high precipitation, it protects fertilizer from leaching below the root zone. Unfortunately, polyethylene mulches do not degrade and must be removed from the field and discarded each season. This is a labor-intensive process whether it is done mechanically or by hand. Several degradable plastic mulches have been developed that are designed to be incorporated into the soil profile, eliminating the need for removal, with no negative impact on soil quality or health. However, these degradable plastics often do not meet degradation expectations (either degrade too quickly or degrade incompletely and require manual removal). The objective of this project was to evaluate several degradable mulches for storage life, ease of use, and influence on tomato production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

No-till management limits the incorporation of crop residue and fertilizer with soil resulting in wetter, colder soils and the accumulation of organic matter, phosphorus (P), and potassium (K) near the soil surface. Banding of P and K could be more effective than broadcast fertilization by counteracting stratification, applying nutrients in the root zone (starter effect), and minimizing reactions with the soil that may reduce their availability to plants. Therefore, this long-term study was established in 1994 to evaluate P and K fertilizer placement methods and grain yield of corn-soybean rotations managed with notill and chisel-plow/disk tillage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La etapa inicial en el crecimiento de los plantines constituye el momento más crítico en su producción. Los materiales compostados pueden resultar beneficiosos por el aporte de nutrientes y la mejora en la condición física del medio de crecimiento. Para evaluar el efecto de sustratos preparados con y sin materiales compostados [Testigo (60% turba de Sphagnum+40% perlita); Mezcla I (45% turba de Sphagnum+30% perlita+25% material compostado); Mezcla II (30% turba de Sphagnum+20% perlita+50% material compostado) y un sustrato Comercial (turba de Sphagnum+40% compost+perlita+vermiculita], sobre la nutrición inicial de plantines de pimiento (Capsicum annuum L.), se realizó un ensayo fertilizando con 0, 150 y 300 mg N L-1. Se determinaron altura, diámetro del tallo y pesos frescos y secos de hoja, tallo y raíz. Se calculó relación vástago/raíz y hoja/tallo en fresco y seco, y porcentual de materia seca. El diseño experimental fue completamente aleatorizado con cuatro repeticiones. Los materiales compostados mejoraron la calidad de los plantines, los cuales no fueron afectados cuando se aplicó N a los sustratos con compost, y sólo se observaron leves mejoras en el crecimiento de los plantines al fertilizar los sustratos carentes de compost, debido a su escasa retención hídrica y elevada lixiviación de N.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several meters of unconsolidated hydrothermal sediment were recovered from the Snake Pit hydrothermal field during ODP Leg 106. Polymetallic sulfides comprise most of the sediment with minor fragments of massive sulfide, organic debris, clay minerals, and fresh glass shards. Trace element and Sr-isotope contents of hydrothermal clays and sulfides from Holes 649B and 649G indicate that these minerals precipitated from a mixed hydrothermal fluid-seawater solution. Evaluation of the REE mineral data and the Snake Pit hydrothermal fluids shows that the REE distribution coefficients between the hydrothermal fluids and clay-sulfide mixes range from 100-500. This indicates that hydrothermal fluids originating in the root-zone of the Snake Pit hydrothermal system may be modified by the precipitation of hydrothermal minerals, either in the shallow subsurface or within chimney structures. Contrasting REE profiles of clay-sulfide aggregates and massive sulfides from Holes 649B and 649G may be accounted for by spatial and/or temporal variations in redox conditions in the plumbing system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present sea surface temperature (SST) estimates based on the relative abundances of long-chain C37 alkenones (UK37') in four sediment cores from a transect spanning the subtropical to subantarctic waters across the subtropical front east of New Zealand. SST estimates from UK37' are compared to those derived from foraminiferal assemblages (using the modern analog technique) in two of these cores. Reconstructions of SST in core tops and Holocene sediments agree well with modern average summer temperatures of ~18°C in subtropical waters and ~14°C in subpolar waters, with a 4°-5°C gradient across the front. Down core UK37' SST estimates indicate that the regional summer SST was 4°-5°C cooler during the last glaciation with an SST of ~10°C in subpolar waters and an SST of ~14°C in subtropical waters. Temperature reconstructions from foraminiferal assemblages agree with those derived from alkenones for the Holocene. In subtropical waters, reconstructions also agree with a glacial cooling of 4° to ~14°C. In contrast, reconstructions for subantarctic pre-Holocene waters indicate a cooling of 8°C with glacial age warm season water temperatures of ~6°C. Thus the alkenones suggest the glacial temperature gradient across the front was the same or reduced slightly to 3.5°-4°C, whereas foraminiferal reconstructions suggest it doubled to 8°C. Our results support previous work indicating that the STF remained fixed over the Chatham Rise during the Last Glacial Maximum. However, the differing results from the two techniques require additional explanation. A change in euphotic zone temperature profiles, seasonality of growth, or preferred growth depth must have affected the temperatures recorded by these biologically based proxies. Regardless of the specific reason, a differential response to the environmental changes between the two climate regimes by the organisms on which the estimates are based suggests increased upwelling associated with increased winds and/or a shallowing of the thermocline associated with increased stratification of the surface layer in the last glaciation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Application of nitrogen (N) fertilizers in agricultural soils increases the risk of N loss to the atmosphere in the form of ammonia (NH3), nitrous oxide (N2O) and nitric oxide (NO)and the water bodies as nitrate (NO3-). The implementation of agricultural management practices can affect these losses. In Mediterranean irrigation systems, the greatest losses of NO3-through leaching occur within the irrigation and the intercropperiod. One way to abate these losses during the intercrop period is the use of cover crops that absorb part of the residual N from the root zone (Gabriel and Quemada, 2011). Moreover, during the following crop, these species could be applied as amendments to the soil, providing both C and N to the soil. This effect of cover and catch crops on decreasing the pool of N potentially lost has focused primarily on NO3-leaching. The aim of this work was to evaluate the effect of cover crops on N2O emission during the in tercrop period in a maize system and its subsequent incorporation into the soil in the following maize crop.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tropical montane forests of the E Andean cordillera in Ecuador receive episodic Sahara- dust inputs particularly increasing Ca deposition. We added CaCl2 to isolate the effect of Ca deposition by Sahara dust to tropical montane forest from the simultaneously occurring pH effect. We examined components of the Ca cycle at four control plots and four plots with added Ca (2 × 5 kg ha?1 Ca annually as CaCl2) in a random arrangement. Between August 2007 and December 2009 (four applications of Ca), we determined Ca concentrations and fluxes in litter leachate, mineral soil solution (0.15 and 0.30 m depths), throughfall, and fine litterfall and Al con- centrations and speciation in soil solutions. After 1 y of Ca addition, we assessed fine-root bio- mass, leaf area, and tree growth. Only < 3% of the applied Ca leached below the acid organic layer (pH 3.5?4.8). The added CaCl2 did not change electrical conductivity in the root zone after 2 y. In the second year of fertilization, Ca retention in the canopy of the Ca treatment tended to decrease relative to the control. After 2 y, 21% of the applied Ca was recycled to soil with throughfall and litterfall. One year after the first Ca addition, fine-root biomass had decreased significantly. Decreasing fine-root biomass might be attributed to a direct or an indirect beneficial effect of Ca on the soil decomposer community. Because of almost complete association of Al with dissolved organic matter and high free Ca2+ : Al3+ activity ratios in solution of all plots, Al toxicity was unlikely. We conclude that the added Ca was retained in the system and had benefi- cial effects on some plants.