939 resultados para Return-based pricing kernel
Resumo:
Actualmente existe un gran interés orientado hacia el mercado del gas natural. Son muchas las razones por las que este combustible se posiciona como uno de los más importantes dentro del panorama energético mundial. Además de que salvaría el hueco dejado por el carbón y el petróleo, supone una alternativa mucho más limpia que se podría desarrollar aún más tanto a nivel doméstico, industrial como en el mundo de los transportes. La industria del gas natural está cambiando rápidamente fundamentalmente por la aparición del gas no convencional y sus técnicas de extracción. Por lo que se está produciendo un cambio en la economía de la producción de gas así como en la dinámica y los movimientos del GNL a lo largo de todo el planeta. El propósito de este estudio es enfocar el estado del sector y mercado del gas natural en todo el mundo y de esta forma subrayar las principales regiones que marcan la tendencia general de los precios de todo el planeta. Además, este trabajo reflejará los pronósticos esperados para los próximos años así como un resumen de las tendencias que se han seguido hasta el momento. Particularmente, se centrará la atención en el movimiento hacia los sistemas basados en forma de hub que comenzaron en EE.UU. y que llegaron a Reino Unido y al continente Europeo a principios del S.XX. Esta tendencia es la que se pretende implantar en España con el fin de conseguir una mayor competitividad, flexibilidad y liquidez en los precios y en el sistema gasista. De esta forma, poco a poco se irá construyendo la estructura hacia un Mercado Único Europeo que es el objetivo final que plantean los organismos de los estados miembros. Sin embargo, para la puesta en marcha de este nuevo modelo es necesario realizar una serie de cambios en el sistema como la modificación de la Ley de Hidrocarburos, la designación de un Operador de Mercado, elaboración de una serie de reglas para regular el mercado así como fomentar la liquidez del mercado. Cuando tenga lugar el cambio regulatorio, la liquidez del sistema español incrementará y se dará la oportunidad de crear nuevas formas para balancear las carteras de gas y establecer nuevas estrategias para gestionar el riesgo. No obstante, antes de que se hagan efectivos los cambios en la legislación, se implantaría uno de los modelos planteados en el “Gas Target Model”, el denominado “Modelo de Asignación de Capacidad Implícita”. La introducción de este modelo sería un primer paso para la integración de un mercado de gas sin la necesidad de afrontar un cambio legislativo, lo que serviría de VIII impulso para alcanzar el “Modelo de Área de Mercado” que sería el mejor para el sistema gasista español y se conectaría ampliamente con el resto de mercados europeos. Las conclusiones del estudio en relación a la formación del nuevo modelo en forma de hub plantean la necesidad de aprovechar al máximo la nueva situación y conseguir implantar el hub lo antes posible para poder dotar al sistema de mayor competencia y liquidez. Además, el sistema español debe aprovechar su gran capacidad y moderna infraestructura para convertir al país en la entrada de gas del suroeste de Europa ampliando así la seguridad de suministro de los países miembros. Otra conclusión que se puede extraer del informe es la necesidad de ampliar el índice de penetración del gas en España e incentivar el consumo frente a otros combustibles fósiles como el carbón y el petróleo. Esto situaría al gas natural como la principal energía de respaldo con respecto a las renovables y permitiría disminuir los precios del kilovatio hora del gas natural. El estudio y análisis de la dinámica que se viene dando en la industria del gas en el mundo es fundamental para poder anticiparse y planear las mejores estrategias frente a los cambios que poco a poco irán modificando el sector y el mercado gasista. ABSTRACT There is a great deal of focus on the natural gas market at the moment. Whether you view natural gas as bridging the gap between coal/oil and an altogether cleaner solution yet to be determined, or as a destination fuel which will be used not only for heating and gas fired generation but also as transportation fuel, there is no doubt that natural gas will have an increasingly important role to play in the global energy landscape. The natural gas industry is changing rapidly, as shale gas exploration changes the economics of gas production and LNG connects regions across the globe. The purpose of this study is to outline the present state of the global gas industry highlighting the differing models around the world. This study will pay particular attention to the move towards hub based pricing that has taken hold first in the US and over the past decade across the UK and Continental Europe. In the coming years the Spanish model will move towards hub based pricing. As gas market regulatory change takes hold, liquidity in the Spanish gas market will increase, bringing with it new ways to balance gas portfolios and placing an increasing focus on managing price risk. This study will in turn establish the links between the changes that have taken place in other markets as a way to better understanding how the Spanish market will evolve in the coming years.
Resumo:
La evolución de los teléfonos móviles inteligentes, dotados de cámaras digitales, está provocando una creciente demanda de aplicaciones cada vez más complejas que necesitan algoritmos de visión artificial en tiempo real; puesto que el tamaño de las señales de vídeo no hace sino aumentar y en cambio el rendimiento de los procesadores de un solo núcleo se ha estancado, los nuevos algoritmos que se diseñen para visión artificial han de ser paralelos para poder ejecutarse en múltiples procesadores y ser computacionalmente escalables. Una de las clases de procesadores más interesantes en la actualidad se encuentra en las tarjetas gráficas (GPU), que son dispositivos que ofrecen un alto grado de paralelismo, un excelente rendimiento numérico y una creciente versatilidad, lo que los hace interesantes para llevar a cabo computación científica. En esta tesis se exploran dos aplicaciones de visión artificial que revisten una gran complejidad computacional y no pueden ser ejecutadas en tiempo real empleando procesadores tradicionales. En cambio, como se demuestra en esta tesis, la paralelización de las distintas subtareas y su implementación sobre una GPU arrojan los resultados deseados de ejecución con tasas de refresco interactivas. Asimismo, se propone una técnica para la evaluación rápida de funciones de complejidad arbitraria especialmente indicada para su uso en una GPU. En primer lugar se estudia la aplicación de técnicas de síntesis de imágenes virtuales a partir de únicamente dos cámaras lejanas y no paralelas—en contraste con la configuración habitual en TV 3D de cámaras cercanas y paralelas—con información de color y profundidad. Empleando filtros de mediana modificados para la elaboración de un mapa de profundidad virtual y proyecciones inversas, se comprueba que estas técnicas son adecuadas para una libre elección del punto de vista. Además, se demuestra que la codificación de la información de profundidad con respecto a un sistema de referencia global es sumamente perjudicial y debería ser evitada. Por otro lado se propone un sistema de detección de objetos móviles basado en técnicas de estimación de densidad con funciones locales. Este tipo de técnicas es muy adecuada para el modelado de escenas complejas con fondos multimodales, pero ha recibido poco uso debido a su gran complejidad computacional. El sistema propuesto, implementado en tiempo real sobre una GPU, incluye propuestas para la estimación dinámica de los anchos de banda de las funciones locales, actualización selectiva del modelo de fondo, actualización de la posición de las muestras de referencia del modelo de primer plano empleando un filtro de partículas multirregión y selección automática de regiones de interés para reducir el coste computacional. Los resultados, evaluados sobre diversas bases de datos y comparados con otros algoritmos del estado del arte, demuestran la gran versatilidad y calidad de la propuesta. Finalmente se propone un método para la aproximación de funciones arbitrarias empleando funciones continuas lineales a tramos, especialmente indicada para su implementación en una GPU mediante el uso de las unidades de filtraje de texturas, normalmente no utilizadas para cómputo numérico. La propuesta incluye un riguroso análisis matemático del error cometido en la aproximación en función del número de muestras empleadas, así como un método para la obtención de una partición cuasióptima del dominio de la función para minimizar el error. ABSTRACT The evolution of smartphones, all equipped with digital cameras, is driving a growing demand for ever more complex applications that need to rely on real-time computer vision algorithms. However, video signals are only increasing in size, whereas the performance of single-core processors has somewhat stagnated in the past few years. Consequently, new computer vision algorithms will need to be parallel to run on multiple processors and be computationally scalable. One of the most promising classes of processors nowadays can be found in graphics processing units (GPU). These are devices offering a high parallelism degree, excellent numerical performance and increasing versatility, which makes them interesting to run scientific computations. In this thesis, we explore two computer vision applications with a high computational complexity that precludes them from running in real time on traditional uniprocessors. However, we show that by parallelizing subtasks and implementing them on a GPU, both applications attain their goals of running at interactive frame rates. In addition, we propose a technique for fast evaluation of arbitrarily complex functions, specially designed for GPU implementation. First, we explore the application of depth-image–based rendering techniques to the unusual configuration of two convergent, wide baseline cameras, in contrast to the usual configuration used in 3D TV, which are narrow baseline, parallel cameras. By using a backward mapping approach with a depth inpainting scheme based on median filters, we show that these techniques are adequate for free viewpoint video applications. In addition, we show that referring depth information to a global reference system is ill-advised and should be avoided. Then, we propose a background subtraction system based on kernel density estimation techniques. These techniques are very adequate for modelling complex scenes featuring multimodal backgrounds, but have not been so popular due to their huge computational and memory complexity. The proposed system, implemented in real time on a GPU, features novel proposals for dynamic kernel bandwidth estimation for the background model, selective update of the background model, update of the position of reference samples of the foreground model using a multi-region particle filter, and automatic selection of regions of interest to reduce computational cost. The results, evaluated on several databases and compared to other state-of-the-art algorithms, demonstrate the high quality and versatility of our proposal. Finally, we propose a general method for the approximation of arbitrarily complex functions using continuous piecewise linear functions, specially formulated for GPU implementation by leveraging their texture filtering units, normally unused for numerical computation. Our proposal features a rigorous mathematical analysis of the approximation error in function of the number of samples, as well as a method to obtain a suboptimal partition of the domain of the function to minimize approximation error.
Resumo:
Recently, the EU energy debate has been dominated by the discussion on energy prices and the competitiveness of the European industry. According to the latest estimates of the International Energy Agency, gas prices in the US are one-quarter of those in Europe. Moreover, prices of imported gas vary across the EU member states. Some EU policy-makers hope that the completion of the internal energy market and the transition to hub-based pricing will solve these discrepancies. Julian Wieczorkiewicz asks in this Commentary whether the abolition of oil-indexation will constitute a cure-all for the above-mentioned problems.
Resumo:
We estimate the 'fundamental' component of euro area sovereign bond yield spreads, i.e. the part of bond spreads that can be justified by country-specific economic factors, euro area economic fundamentals, and international influences. The yield spread decomposition is achieved using a multi-market, no-arbitrage affine term structure model with a unique pricing kernel. More specifically, we use the canonical representation proposed by Joslin, Singleton, and Zhu (2011) and introduce next to standard spanned factors a set of unspanned macro factors, as in Joslin, Priebsch, and Singleton (2013). The model is applied to yield curve data from Belgium, France, Germany, Italy, and Spain over the period 2005-2013. Overall, our results show that economic fundamentals are the dominant drivers behind sovereign bond spreads. Nevertheless, shocks unrelated to the fundamental component of the spread have played an important role in the dynamics of bond spreads since the intensification of the sovereign debt crisis in the summer of 2011
Resumo:
This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two non-linear techniques, namely, recurrent neural networks and kernel recursive least squares regression - techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation.
Resumo:
This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. We use non-linear, artificial intelligence techniques, namely, recurrent neural networks, evolution strategies and kernel methods in our forecasting experiment. In the experiment, these three methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. There is evidence in the literature that evolutionary methods can be used to evolve kernels hence our future work should combine the evolutionary and kernel methods to get the benefits of both.
Resumo:
This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two nonlinear techniques, namely, recurrent neural networks and kernel recursive least squares regressiontechniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a nave random walk model. The best models were nonlinear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. Beyond its economic findings, our study is in the tradition of physicists' long-standing interest in the interconnections among statistical mechanics, neural networks, and related nonparametric statistical methods, and suggests potential avenues of extension for such studies. © 2010 Elsevier B.V. All rights reserved.
Resumo:
High street optometric practices are for-profit businesses. They mostly provide sight testing and eye examination services and sell optical products, such as spectacles and contact lenses. The sight testing services are often sold at a vastly reduced price and profits are generated primarily through high margin spectacle sales, in a loss leading strategy. Published literature highlights weaknesses in this strategy as it forms a barrier to widening the scope of services provided within optometric practices. This includes specialist non-refraction based services, such as shared care. In addition this business strategy discourages investment in advanced diagnostic equipment and higher professional qualifications. The aim of this thesis was to develop a greater understanding of the traditional loss-leading strategy. The thesis also aimed to assess the plausibility of alternative business models to support the development of specialist non-refraction services within high street optometric practice. This research was based on a single independent optometric practice that specialises in advanced retinal imaging and offers a broad range of shared care services. Specialist non-refraction based services were found to be poor generators of spectacle sales likely due to patient needs and presenting concerns. Alternative business strategies to support these services included charging more realistic professional fees via cost-based pricing and monthly payment plans. These strategies enabled specialist services to be more self-sustainable with less reliance on cross-subsidy from spectacle sales. Furthermore, improving operational efficiency can increase stand-alone profits for specialist services.Practice managers may be reluctant to increase professional fees due to market pressures and confidence. However, this thesis found that patients were accepting of increased professional fees. Practice managers can implement alternative business models to enhance eye care provision in high street optometric practices. These alternative business models also improve revenues and profits generated via clinical services and improve patient loyalty.
Resumo:
Parking is often underpriced and expanding its capacity is expensive; universities need a better way of reducing congestion outside of building costly parking garages. Demand based pricing mechanisms, such as auctions, offer a possible solution to the problem by promising to reduce parking at peak times. However, faculty, students, and staff at universities have systematically different parking needs, leading to different parking valuations. In this study, I determine the impact university affiliation has on predicting bid values cast in three Dutch Auctions of on-campus parking permits sold at Chapman University in Fall 2010. Using clustering techniques crosschecked with university demographic information to detect affiliation groups, I ran a log-linear regression, finding that university affiliation had a larger effect on bid amount than on lot location and fraction of auction duration. Generally, faculty were predicted to have higher bids whereas students were predicted to have lower bids.
Resumo:
Efficient markets should guarantee the existence of zero spreads for total return swaps. However, real estate markets have recorded values that are significantly different from zero in both directions. Possible explanations might suggest non-rational behaviour by inexperienced market players or unusual features of the underlying asset market. We find that institutional characteristics in the underlying market lead to market inefficiencies and, hence, to the creation of a rational trading window with upper and lower bounds within which transactions do not offer arbitrage opportunities. Given the existence of this rational trading window, we also argue that the observed spreads can substantially be explained by trading imbalances due to the limited liquidity of a newly formed market and/or to the effect of market sentiment, complementing explanations based on the lag between underlying market returns and index returns.
Resumo:
This thesis focuses on theoretical asset pricing models and their empirical applications. I aim to investigate the following noteworthy problems: i) if the relationship between asset prices and investors' propensities to gamble and to fear disaster is time varying, ii) if the conflicting evidence for the firm and market level skewness can be explained by downside risk, Hi) if costly learning drives liquidity risk. Moreover, empirical tests support the above assumptions and provide novel findings in asset pricing, investment decisions, and firms' funding liquidity. The first chapter considers a partial equilibrium model where investors have heterogeneous propensities to gamble and fear disaster. Skewness preference represents the desire to gamble, while kurtosis aversion represents fear of extreme returns. Using US data from 1988 to 2012, my model demonstrates that in bad times, risk aversion is higher, more people fear disaster, and fewer people gamble, in contrast to good times. This leads to a new empirical finding: gambling preference has a greater impact on asset prices during market downturns than during booms. The second chapter consists of two essays. The first essay introduces a foramula based on conditional CAPM for decomposing the market skewness. We find that the major market upward and downward movements can be well preadicted by the asymmetric comovement of betas, which is characterized by an indicator called "Systematic Downside Risk" (SDR). We find that SDR can efafectively forecast future stock market movements and we obtain out-of-sample R-squares (compared with a strategy using historical mean) of more than 2.27% with monthly data. The second essay reconciles a well-known empirical fact: aggregating positively skewed firm returns leads to negatively skewed market return. We reconcile this fact through firms' greater response to negative maraket news than positive market news. We also propose several market return predictors, such as downside idiosyncratic skewness. The third chapter studies the funding liquidity risk based on a general equialibrium model which features two agents: one entrepreneur and one external investor. Only the investor needs to acquire information to estimate the unobservable fundamentals driving the economic outputs. The novelty is that information acquisition is more costly in bad times than in good times, i.e. counter-cyclical information cost, as supported by previous empirical evidence. Later we show that liquidity risks are principally driven by costly learning. Résumé Cette thèse présente des modèles théoriques dévaluation des actifs et leurs applications empiriques. Mon objectif est d'étudier les problèmes suivants: la relation entre l'évaluation des actifs et les tendances des investisseurs à parier et à crainadre le désastre varie selon le temps ; les indications contraires pour l'entreprise et l'asymétrie des niveaux de marché peuvent être expliquées par les risques de perte en cas de baisse; l'apprentissage coûteux augmente le risque de liquidité. En outre, des tests empiriques confirment les suppositions ci-dessus et fournissent de nouvelles découvertes en ce qui concerne l'évaluation des actifs, les décisions relatives aux investissements et la liquidité de financement des entreprises. Le premier chapitre examine un modèle d'équilibre où les investisseurs ont des tendances hétérogènes à parier et à craindre le désastre. La préférence asymétrique représente le désir de parier, alors que le kurtosis d'aversion représente la crainte du désastre. En utilisant les données des Etats-Unis de 1988 à 2012, mon modèle démontre que dans les mauvaises périodes, l'aversion du risque est plus grande, plus de gens craignent le désastre et moins de gens parient, conatrairement aux bonnes périodes. Ceci mène à une nouvelle découverte empirique: la préférence relative au pari a un plus grand impact sur les évaluations des actifs durant les ralentissements de marché que durant les booms économiques. Exploitant uniquement cette relation générera un revenu excédentaire annuel de 7,74% qui n'est pas expliqué par les modèles factoriels populaires. Le second chapitre comprend deux essais. Le premier essai introduit une foramule base sur le CAPM conditionnel pour décomposer l'asymétrie du marché. Nous avons découvert que les mouvements de hausses et de baisses majeures du marché peuvent être prédits par les mouvements communs des bêtas. Un inadicateur appelé Systematic Downside Risk, SDR (risque de ralentissement systématique) est créé pour caractériser cette asymétrie dans les mouvements communs des bêtas. Nous avons découvert que le risque de ralentissement systématique peut prévoir les prochains mouvements des marchés boursiers de manière efficace, et nous obtenons des carrés R hors échantillon (comparés avec une stratégie utilisant des moyens historiques) de plus de 2,272% avec des données mensuelles. Un investisseur qui évalue le marché en utilisant le risque de ralentissement systématique aurait obtenu une forte hausse du ratio de 0,206. Le second essai fait cadrer un fait empirique bien connu dans l'asymétrie des niveaux de march et d'entreprise, le total des revenus des entreprises positiveament asymétriques conduit à un revenu de marché négativement asymétrique. Nous décomposons l'asymétrie des revenus du marché au niveau de l'entreprise et faisons cadrer ce fait par une plus grande réaction des entreprises aux nouvelles négatives du marché qu'aux nouvelles positives du marché. Cette décomposition révélé plusieurs variables de revenus de marché efficaces tels que l'asymétrie caractéristique pondérée par la volatilité ainsi que l'asymétrie caractéristique de ralentissement. Le troisième chapitre fournit une nouvelle base théorique pour les problèmes de liquidité qui varient selon le temps au sein d'un environnement de marché incomplet. Nous proposons un modèle d'équilibre général avec deux agents: un entrepreneur et un investisseur externe. Seul l'investisseur a besoin de connaitre le véritable état de l'entreprise, par conséquent, les informations de paiement coutent de l'argent. La nouveauté est que l'acquisition de l'information coute plus cher durant les mauvaises périodes que durant les bonnes périodes, comme cela a été confirmé par de précédentes expériences. Lorsque la récession comamence, l'apprentissage coûteux fait augmenter les primes de liquidité causant un problème d'évaporation de liquidité, comme cela a été aussi confirmé par de précédentes expériences.
Resumo:
In 2009, the Sheffield Alcohol Research Group (SARG) at Sheffield University developed the Sheffield Alcohol Policy Model version 2.0 (SAPM) to appraise the potential impact of alcohol policies, including different levels of MUP, for the population of England. In 2013, SARG were commissioned by the DHSSPS and the Department for Social Development to adapt the Sheffield Model to NI in order to appraise the potential impact of a range of alcohol pricing policies. The present report represents the results of this work. Estimates from the Northern Ireland (NI) adaptation of the Sheffield Alcohol Policy Model - version 3 - (SAPM3) suggest: 1. Minimum Unit Pricing (MUP) policies would be effective in reducing alcohol consumption, alcohol related harms (including alcohol-related deaths, hospitalisations, crimes and workplace absences) and the costs associated with those harms. 2. A ban on below-cost selling (implemented as a ban on selling alcohol for below the cost of duty plus the VAT payable on that duty) would have a negligible impact on alcohol consumption or related harms. 3. A ban on price-based promotions in the off-trade, either alone or in tandem with an MUP policy would be effective in reducing alcohol consumption, related harms and associated costs. 4. MUP and promotion ban policies would only have a small impact on moderate drinkers at all levels of income. Somewhat larger impacts would be experienced by increasing risk drinkers, with the most substantial effects being experienced by high risk drinkers. 5. MUP and promotion ban policies would have larger impacts on those in poverty, particularly high risk drinkers, than those not in poverty. However, those in poverty also experience larger relative gains in health and are estimated to marginally reduce their spending due to their reduced drinking under the majority of policies åÊ
Resumo:
Nowadays, the joint exploitation of images acquired daily by remote sensing instruments and of images available from archives allows a detailed monitoring of the transitions occurring at the surface of the Earth. These modifications of the land cover generate spectral discrepancies that can be detected via the analysis of remote sensing images. Independently from the origin of the images and of type of surface change, a correct processing of such data implies the adoption of flexible, robust and possibly nonlinear method, to correctly account for the complex statistical relationships characterizing the pixels of the images. This Thesis deals with the development and the application of advanced statistical methods for multi-temporal optical remote sensing image processing tasks. Three different families of machine learning models have been explored and fundamental solutions for change detection problems are provided. In the first part, change detection with user supervision has been considered. In a first application, a nonlinear classifier has been applied with the intent of precisely delineating flooded regions from a pair of images. In a second case study, the spatial context of each pixel has been injected into another nonlinear classifier to obtain a precise mapping of new urban structures. In both cases, the user provides the classifier with examples of what he believes has changed or not. In the second part, a completely automatic and unsupervised method for precise binary detection of changes has been proposed. The technique allows a very accurate mapping without any user intervention, resulting particularly useful when readiness and reaction times of the system are a crucial constraint. In the third, the problem of statistical distributions shifting between acquisitions is studied. Two approaches to transform the couple of bi-temporal images and reduce their differences unrelated to changes in land cover are studied. The methods align the distributions of the images, so that the pixel-wise comparison could be carried out with higher accuracy. Furthermore, the second method can deal with images from different sensors, no matter the dimensionality of the data nor the spectral information content. This opens the doors to possible solutions for a crucial problem in the field: detecting changes when the images have been acquired by two different sensors.