986 resultados para Retrial Inventory Systems
Resumo:
Transportation Department, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
"ORNL/EIS-144."
Resumo:
"Printed: March 1990."
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Understanding the feasibility of applying the Team Climate Inventory (TCI) in non-Western cultures is essential for researchers attempting to understand the influence of culture on workers' perceived climate. This study describes the application of the TCI in such a setting using data from 203 administrators employed in a Taiwanese medical center. Reliability and factor analyses were performed to establish the feasibility and psychometric properties of the TCI Taiwan version. Reliabilities of both the four- and five-factor solutions exceeded .80. Factor analyses indicated a satisfactory four-factor structure, despite some variations in comparison with the U.K. version. The TCI Taiwan version is feasible and has acceptable psychometric properties. Further research is warranted regarding the degree to which disparities result from cultural differences and the specific nature of organizational systems in Chinese communities.
Resumo:
Innovation has long been an area of interest to social scientists, and particularly to psychologists working in organisational settings. The team climate inventory (TCI) is a facet-specific measure of team climate for innovation that provides a picture of the level and quality of teamwork in a unit using a series of Likert scales. This paper describes its Italian validation in 585 working group members employed in health-related and other contexts. The data were evaluated by means of factorial analysis (including an analysis of the internal consistency of the scales) and Pearson’s product moment correlations. The results show the internal consistency of the scales and the satisfactory factorial structure of the inventory, despite some variations in the factorial structure mainly due to cultural differences and the specific nature of Italian organisational systems.
Resumo:
In recent years, UK industry has seen an explosive growth in the number of `Computer Aided Production Management' (CAPM) system installations. Of the many CAPM systems, materials requirement planning/manufacturing resource planning (MRP/MRPII) is the most widely implemented. Despite the huge investments in MRP systems, over 80 percent are said to have failed within 3 to 5 years of installation. Many people now assume that Just-In-Time (JIT) is the best manufacturing technique. However, those who have implemented JIT have found that it also has many problems. The author argues that the success of a manufacturing company will not be due to a system which complies with a single technique; but due to the integration of many techniques and the ability to make them complement each other in a specific manufacturing environment. This dissertation examines the potential for integrating MRP with JIT and Two-Bin systems to reduce operational costs involved in managing bought-out inventory. Within this framework it shows that controlling MRP is essential to facilitate the integrating process. The behaviour of MRP systems is dependent on the complex interactions between the numerous control parameters used. Methodologies/models are developed to set these parameters. The models are based on the Pareto principle. The idea is to use business targets to set a coherent set of parameters, which not only enables those business targets to be realised, but also facilitates JIT implementation. It illustrates this approach in the context of an actual manufacturing plant - IBM Havant. (IBM Havant is a high volume electronics assembly plant with the majority of the materials bought-out). The parameter setting models are applicable to control bought-out items in a wide range of industries and are not dependent on specific MRP software. The models have produced successful results in several companies and are now being developed as commercial products.
Resumo:
This thesis is concerned with the inventory control of items that can be considered independent of one another. The decisions when to order and in what quantity, are the controllable or independent variables in cost expressions which are minimised. The four systems considered are referred to as (Q, R), (nQ,R,T), (M,T) and (M,R,T). Wiith ((Q,R) a fixed quantity Q is ordered each time the order cover (i.e. stock in hand plus on order ) equals or falls below R, the re-order level. With the other three systems reviews are made only at intervals of T. With (nQ,R,T) an order for nQ is placed if on review the inventory cover is less than or equal to R, where n, which is an integer, is chosen at the time so that the new order cover just exceeds R. In (M, T) each order increases the order cover to M. Fnally in (M, R, T) when on review, order cover does not exceed R, enough is ordered to increase it to M. The (Q, R) system is examined at several levels of complexity, so that the theoretical savings in inventory costs obtained with more exact models could be compared with the increases in computational costs. Since the exact model was preferable for the (Q,R) system only exact models were derived for theoretical systems for the other three. Several methods of optimization were tried, but most were found inappropriate for the exact models because of non-convergence. However one method did work for each of the exact models. Demand is considered continuous, and with one exception, the distribution assumed is the normal distribution truncated so that demand is never less than zero. Shortages are assumed to result in backorders, not lost sales. However, the shortage cost is a function of three items, one of which, the backorder cost, may be either a linear, quadratic or an exponential function of the length of time of a backorder, with or without period of grace. Lead times are assumed constant or gamma distributed. Lastly, the actual supply quantity is allowed to be distributed. All the sets of equations were programmed for a KDF 9 computer and the computed performances of the four inventory control procedures are compared under each assurnption.
Resumo:
Manufacturing planning and control systems are fundamental to the successful operations of a manufacturing organisation. 10 order to improve their business performance, significant investment is made by companies into planning and control systems; however, not all companies realise the benefits sought Many companies continue to suffer from high levels of inventory, shortages, obsolete parts, poor resource utilisation and poor delivery performance. This thesis argues that the fit between the planning and control system and the manufacturing organisation is a crucial element of success. The design of appropriate control systems is, therefore, important. The different approaches to the design of manufacturing planning and control systems are investigated. It is concluded that there is no provision within these design methodologies to properly assess the impact of a proposed design on the manufacturing facility. Consequently, an understanding of how a new (or modified) planning and control system will perform in the context of the complete manufacturing system is unlikely to be gained until after the system has been implemented and is running. There are many modelling techniques available, however discrete-event simulation is unique in its ability to model the complex dynamics inherent in manufacturing systems, of which the planning and control system is an integral component. The existing application of simulation to manufacturing control system issues is limited: although operational issues are addressed, application to the more fundamental design of control systems is rarely, if at all, considered. The lack of a suitable simulation-based modelling tool does not help matters. The requirements of a simulation tool capable of modelling a host of different planning and control systems is presented. It is argued that only through the application of object-oriented principles can these extensive requirements be achieved. This thesis reports on the development of an extensible class library called WBS/Control, which is based on object-oriented principles and discrete-event simulation. The functionality, both current and future, offered by WBS/Control means that different planning and control systems can be modelled: not only the more standard implementations but also hybrid systems and new designs. The flexibility implicit in the development of WBS/Control supports its application to design and operational issues. WBS/Control wholly integrates with an existing manufacturing simulator to provide a more complete modelling environment.
Resumo:
Analysis of the use of ICT in the aerospace industry has prompted the detailed investigation of an inventory-planning problem. There is a special class of inventory, consisting of expensive repairable spares for use in support of aircraft operations. These items, called rotables, are not well served by conventional theory and systems for inventory management. The context of the problem, the aircraft maintenance industry sector, is described in order to convey some of its special characteristics in the context of operations management. A literature review is carried out to seek existing theory that can be applied to rotable inventory and to identify a potential gap into which newly developed theory could contribute. Current techniques for rotable planning are identified in industry and the literature: these methods are modelled and tested using inventory and operational data obtained in the field. In the expectation that current practice leaves much scope for improvement, several new models are proposed. These are developed and tested on the field data for comparison with current practice. The new models are revised following testing to give improved versions. The best model developed and tested here comprises a linear programming optimisation, which finds an optimal level of inventory for multiple test cases, reflecting changing operating conditions. The new model offers an inventory plan that is up to 40% less expensive than that determined by current practice, while maintaining required performance.
Resumo:
Inventory control in complex manufacturing environments encounters various sources of uncertainity and imprecision. This paper presents one fuzzy knowledge-based approach to solving the problem of order quantity determination, in the presence of uncertain demand, lead time and actual inventory level. Uncertain data are represented by fuzzy numbers, and vaguely defined relations between them are modeled by fuzzy if-then rules. The proposed representation and inference mechanism are verified using a large numbers of examples. The results of three representative cases are summarized. Finally a comparison between the developed fuzzy knowledge-based and traditional, probabilistic approaches is discussed.
Resumo:
This paper discusses demand and supply chain management and examines how artificial intelligence techniques and RFID technology can enhance the responsiveness of the logistics workflow. This proposed system is expected to have a significant impact on the performance of logistics networks by virtue of its capabilities to adapt unexpected supply and demand changes in the volatile marketplace with the unique feature of responsiveness with the advanced technology, Radio Frequency Identification (RFID). Recent studies have found that RFID and artificial intelligence techniques drive the development of total solution in logistics industry. Apart from tracking the movement of the goods, RFID is able to play an important role to reflect the inventory level of various distribution areas. In today’s globalized industrial environment, the physical logistics operations and the associated flow of information are the essential elements for companies to realize an efficient logistics workflow scenario. Basically, a flexible logistics workflow, which is characterized by its fast responsiveness in dealing with customer requirements through the integration of various value chain activities, is fundamental to leverage business performance of enterprises. The significance of this research is the demonstration of the synergy of using a combination of advanced technologies to form an integrated system that helps achieve lean and agile logistics workflow.
Resumo:
Lean manufacturing (LM) is currently enjoying its second heyday. Companies in several industries are implementing leanpractices to keep pace with the competition and achieve better results. In this article, we will concentrate on how companies can improve their inventoryturnover performance through the use ofleanpractices. According to our main proposition, firms that widely apply leanpractices have higher inventoryturnover than those that do not rely on LM. However, there may be significant differences in inventoryturnover even among lean manufacturers depending on their contingencies. Therefore, we also investigate how various contingency factors (production systems, order types, product types) influence theinventoryturnoveroflean manufacturers. We use cluster and correlation analysis to separate manufacturers based onthe extent of their leanness and to examine the effect of contingencies. We acquired the data from the International Manufacturing Strategy Survey (IMSS) in ISIC sectors 28–35.
Resumo:
The purpose of this study was to examine the reliability and validity of the School Anxiety Inventory (SAI) using a sample of 646 Slovenian adolescents (48% boys), ranging in age from 12 to 19 years. Single confirmatory factor analyses replicated the correlated four-factor structure of scores on the SAI for anxiety-provoking school situations (Anxiety about School Failure and Punishment, Anxiety about Aggression, Anxiety about Social Evaluation, and Anxiety about Academic Evaluation), and the three-factor structure of the anxiety response systems (Physiological Anxiety, Cognitive Anxiety, and Behavioral Anxiety). Equality of factor structures was compared using multigroup confirmatory factor analyses. Measurement invariance for the four- and three-factor models was obtained across gender and school-level samples. The scores of the instrument showed high internal reliability and adequate test–retest reliability. The concurrent validity of the SAI scores was also examined through its relationship with the Social Anxiety Scale for Adolescents (SASA) scores and the Questionnaire about Interpersonal Difficulties for Adolescents (QIDA) scores. Correlations of the SAI scores with scores on the SASA and the QIDA were of low to moderate effect sizes.