866 resultados para Resuscitation Team (RT)
Resumo:
This paper describes a Multi-agent Scheduling System that assumes the existence of several Machines Agents (which are decision-making entities) distributed inside the Manufacturing System that interact and cooperate with other agents in order to obtain optimal or near-optimal global performances. Agents have to manage their internal behaviors and their relationships with other agents via cooperative negotiation in accordance with business policies defined by the user manager. Some Multi Agent Systems (MAS) organizational aspects are considered. An original Cooperation Mechanism for a Team-work based Architecture is proposed to address dynamic scheduling using Meta-Heuristics.
Resumo:
In team sports, the spatial distribution of players on the field is determined by the interaction behavior established at both player and team levels. The distribution patterns observed during a game emerge from specific technical and tactical methods adopted by the teams, and from individual, environmental and task constraints that influence players' behaviour. By understanding how specific patterns of spatial interaction are formed, one can characterize the behavior of the respective teams and players. Thus, in the present work we suggest a novel spatial method for describing teams' spatial interaction behaviour, which results from superimposing the Voronoi diagrams of two competing teams. We considered theoretical patterns of spatial distribution in a well-defined scenario (5 vs 4+ GK played in a field of 20x20m) in order to generate reference values of the variables derived from the superimposed Voronoi diagrams (SVD). These variables were tested in a formal application to empirical data collected from 19 Futsal trials with identical playing settings. Results suggest that it is possible to identify a number of characteristics that can be used to describe players' spatial behavior at different levels, namely the defensive methods adopted by the players.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
In this cross-sectional study we analyzed, whether team climate for innovation mediates the relationship between team task structure and innovative behavior, job satisfaction, affective organizational commitment, and work stress. 310 employees in 20 work teams of an automotive company participated in this study. 10 teams had been changed from a restrictive to a more self-regulating team model by providing task variety, autonomy, team-specific goals, and feedback in order to increase team effectiveness. Data support the supposed causal chain, although only with respect to team innovative behavior all required effects were statistically significant. Longitudinal designs and larger samples are needed to prove the assumed causal relationships, but results indicate that implementing self-regulating teams might be an effective strategy for improving innovative behavior and thus team and company effectiveness.
Resumo:
This paper explores the management structure of the team-based organization. First it provides a theoretical model of structures and processes of work teams. The structure determines the team’s responsibilities in terms of authority and expertise about specific regulation tasks. The responsiveness of teams to these responsibilities are the processes of teamwork, in terms of three dimensions, indicating to what extent teams indeed use the space provided to them. The research question that this paper addresses is to what extent the position of responsibilities in the team-based organization affect team responsiveness. This is done by two hypotheses. First, the effect of the so-called proximity of regulation tasks is tested. It is expected that the responsibility for tasks positioned higher in the organization (i.e. further from the team) generally has a negative effect on team responsiveness, whereas tasks positioned lower in the organization (i.e. closer to the team) will have a positive effect on the way in which teams respond. Second, the relationship between the number of tasks for which the team is responsible with team responsiveness is tested. Theory suggests that teams being responsible for a larger number of tasks perform better, i.e. show higher responsiveness. These hypotheses are tested by a study of 109 production teams in the automotive industry. The results show that, as the theory predicts, increasing numbers of responsibilities have positive effects on team responsiveness. However, the delegation of expertise to teams seems to be the most important predictor of responsiveness. Also, not all regulation tasks show to have effects on team responsiveness. Most tasks do not show to have any significant effect at all. A number of tasks affects team responsiveness positively, when their responsibility is positioned lower in the organization, but also a number of tasks affects team responsiveness positively when located higher in the organization, i.e. further from the teams in the production. The results indicate that more attention can be paid to the distribution of responsibilities, in particular expertise, to teams. Indeed delegating more expertise improve team responsiveness, however some tasks might be located better at higher organizational levels, indicating that there are limitations to what responsibilities teams can handle.
Resumo:
Dynamical systems theory in this work is used as a theoretical language and tool to design a distributed control architecture for a team of three robots that must transport a large object and simultaneously avoid collisions with either static or dynamic obstacles. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constraints are modeled as attractors (i.e. asymptotic stable states) of the behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotical stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
In this paper dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for a team of two robots that must transport a large object and simultaneously avoid collisions with obstacles (either static or dynamic). This work extends the previous work with two robots (see [1] and [5]). However here we demonstrate that it’s possible to simplify the architecture presented in [1] and [5] and reach an equally stable global behavior. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constrains are modeled as attractors (i.e. asymptotic stable states) of a behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotic stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
Team sports represent complex systems: players interact continuously during a game, and exhibit intricate patterns of interaction, which can be identified and investigated at both individual and collective levels. We used Voronoi diagrams to identify and investigate the spatial dynamics of players' behavior in Futsal. Using this tool, we examined 19 plays of a sub-phase of a Futsal game played in a reduced area (20 m(2)) from which we extracted the trajectories of all players. Results obtained from a comparative analysis of player's Voronoi area (dominant region) and nearest teammate distance revealed different patterns of interaction between attackers and defenders, both at the level of individual players and teams. We found that, compared to defenders, larger dominant regions were associated with attackers. Furthermore, these regions were more variable in size among players from the same team but, at the player level, the attackers' dominant regions were more regular than those associated with each of the defenders. These findings support a formal description of the dynamic spatial interaction of the players, at least during the particular sub-phase of Futsal investigated. The adopted approach may be extended to other team behaviors where the actions taken at any instant in time by each of the involved agents are associated with the space they occupy at that particular time.
Resumo:
We show here a simplified RT-PCR for identification of dengue virus types 1 and 2. Five dengue virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD as a negative control, were used in this study. C6/36 cells were infected and supernatants were collected after 7 days. The RT-PCR, done in a single reaction vessel, was carried out following a 1/10 dilution of virus in distilled water or in a detergent mixture containing Nonidet P40. The 50 µl assay reaction mixture included 50 pmol of specific primers amplifying a 482 base pair sequence for dengue type 1 and 210 base pair sequence for dengue type 2. In other assays, we used dengue virus consensus primers having maximum sequence similarity to the four serotypes, amplifying a 511 base pair sequence. The reaction mixture also contained 0.1 mM of the four deoxynucleoside triphosphates, 7.5 U of reverse transcriptase, 1U of thermostable Taq DNA polymerase. The mixture was incubated for 5 minutes at 37ºC for reverse transcription followed by 30 cycles of two-step PCR amplification (92ºC for 60 seconds, 53ºC for 60 seconds) with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized by UV light after staining with ethidium bromide solution. Low virus titer around 10 3, 6 TCID50/ml was detected by RT-PCR for dengue type 1. Specific DNA amplification was observed with all the Brazilian dengue strains by using dengue virus consensus primers. As compared to other RT-PCRs, this assay is less laborious, done in a shorter time, and has reduced risk of contamination
Resumo:
Inhalation injuries are currently the factor most responsible for mortality in thermally injured patients. Inhalation injuries may occur independently, but generally occur together with skin burn. Smoke inhalation affects all levels of the respiratory system and the extent of the inhalation injury depends on the duration, exposure, amount and toxicity of the fume temperature, concentration and solubility of toxic gases, the occurrence of the accident in a closed space and pre-existing diseases. Smoke inhalation also induces changes in the systemic organs with the need for more fluid for resuscitation. Systemic vasoconstriction, with an elevation in systemic vascular resistance, a fall in myocardial contractility and a great increase in lymphatic flow in soft tissue are the most important changes in systemic organs. On admission of a burn patient there is a high suspicion of inhalation injury when there are signs and symptoms such as hoarseness, strides, dyspnea, carbonaceous sputum, anxiety or disorientation, with or without face burns. The patient with these findings has partial airway obstruction and there is substantial risk complete airway obstruction occurring of secondary to the edema. Patients with suspected inhalation injury should be intubated so as to maintain airway patency and avoid a total obstruction. This group of patients frequently develop respiratory failure with the need for mechanical ventilatory support. Nosocomial infections, sepsis and multiple organ system failure may occur. Late complications of inhalation injury are tracheitis, tracheal stenosis or tracheomalacia and chronic airway disease, which is relatively rare. Early diagnosis of inhalation injury and treatment in a Burn Unit by a group of highly motivated clinicians and a good team of nurses is essential in order to decrease the morbidity and mortality related to inhalation injury.
Resumo:
Proceedings of the 10th Mediterranean Conference on Control and Automation - MED2002 Lisbon, Portugal, July 9-12, 2002
Resumo:
International Conference on Advanced Robotics, Coimbra, Portugal, Julho 2003
Resumo:
Proceedings of the Scientific Meeting of the Portuguese Robotics Open 2004
Resumo:
Nucleic Acid Testing (NAT) as a tool for primary screening of blood donors became a reality in the end of the 1990 decade. We report here the development of an "in-house" RT-PCR method that allows the simultaneous (multiplex) detection of HCV and HIV-RNA in addition to an artificial RNA employed as an external control. This method detects all HIV group M subtypes, plus group N and O, with a detection threshold of 500 IU/mL. After validation, the method replaced p24 Ag testing, in use for blood donation screening since 1996 at our services. From July 2001 to February 2006, 102,469 donations were tested and 41 (0.04%) were found HIV-RNA reactive. One NAT-only reactive donation (antibody non-reactive) was observed, with subsequent seroconversion of the implied donor, giving a yield of 1:102,469. This rate is in contrast to the international experience that reports a detection of approximately 1:600,000 - 1:3,100,000 of isolated HIV-RNA donations.