996 resultados para Resonance Fluorescence


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have examined the effect of the uncharged species of lidocaine (LDC) and etidocaine (EDC) on the acyl chain moiety of egg phosphatidylcholine liposomes. Changes in membrane organization caused by both anesthetics were detected through the use of EPR spin labels (5, 7 and 12 doxyl stearic acid methyl ester) or fluorescence probes (4, 6, 10, 16 pyrene-fatty acids). The disturbance caused by the LA was greater when the probes were inserted in more external positions of the acyl chain and decreased towards the hydrophobic core of the membrane. The results indicate a preferential insertion of LDC at the polar interface of the bilayer and in the first half of the acyl chain, for EDC. Additionally, 2 H NMR spectra of multilamellar liposomes composed by acyl chain-perdeutero DMPC and EPC (1:4 mol%) allowed the determination of the segmental order (S-mol) and dynamics (T-1) of the acyl chain region. In accordance to the fluorescence and EPR results, changes in molecular orientation and dynamics are more prominent if the LA preferential location is more superficial, as for LDC while EDC seems to organize the acyl chain region between carbons 2-8, which is indicative of its positioning. We propose that the preferential location of LDC and EDC inside the bilayers creates a ""transient site"", which is related to the anesthetic potency since it could modulate the access of these molecules to their binding site(s) in the voltage-gated sodium channel. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EPR spectra of 5- and 16-doxyl stearic acid nitroxide probes (5-DSA and 16-DSA, respectively) bound to bovine serum albumin (BSA) revealed that in the presence of ionic surfactants, at least, two label populations coexist in equilibrium. The rotational correlation times (tau) indicated that component I displays a more restricted mobility state, associated to the spin labels bound to the protein; the less immobilized component 2 is due to label localization in the surfactant aggregates. For both probes, the increase of surfactant concentration leads to higher motional levels of component 1 followed by a simultaneous decrease of this fraction of nitroxides and its conversion into component 2. For 10 mM cethyltrimethylammonium chloride (CTAC), the nitroxides are 100% bound to the protein, whereas at 10mM N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and sodium dodecyl sulfate (SDS) the fractions of bound nitroxides are reduced to 18% and 86%, respectively. No significant polarity changes were observed in the whole surfactant concentration range for component 1. Moreover, at higher surfactant concentration, component 2 exhibited a similar polarity as in the pure surfactant micelles. For 16-DSA the surfactant effect is different: at 10mM of HPS and CTAC the fractions of bound nitroxides are 76% and 49%, respectively, while at 10 mM SDS they are present exclusively in a micellar environment, consistent with 100% of component 2. Overall, both SDS and HPS are able to effectively displace the nitroxide probes from the protein binding sites. while CTAC seems to affect the nitroxide binding to a significantly smaller extent. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and complete characterisation of the fluorescent ligand, 4-acridinol-1-sulphonic acid (the acridine analogue of 8-quinolinol-5-sulfonic acid) is described. Using a judicious array of nuclear magnetic resonance spectroscopy experiments, the structural elucidation and full assignment of all proton and carbon chemical shifts were afforded. The 4-acridinol-1-sulphonic acid was found to behave in a similar manner to 8-quinolinol-5-sulphonic acid, forming fluorescent complexes with magnesium(II) and zinc(II). The uncorrected emission maxima for the metal–acridinol complexes were found to be at around 620 nm compared to 505 nm for the respective quinolinol complexes. Unfortunately, preliminary spectrofluorimetric analytical figures of merit revealed that the detection limits of the new acridinol metal complexes were one and a half orders of magnitude poorer than those attained with the corresponding quinolinol ligand. However, in contrast to 8-quinolinol-5-sulphonic acid, the 4-acridinol-1-sulphonic acid ligand showed considerable selectivity for magnesium(II) and zinc(II) over aluminium(III).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have examined the effect of the uncharged species of lidocaine (LDC) and etidocaine (EDC) on the acyl chain moiety of egg phosphatidylcholine liposomes. Changes in membrane organization caused by both anesthetics were detected through the use of EPR spin labels (5, 7 and 12 doxyl stearic acid methyl ester) or fluorescence probes (4, 6, 10, 16 pyrene-fatty acids). The disturbance caused by the LA was greater when the probes were inserted in more external positions of the acyl chain and decreased towards the hydrophobic core of the membrane. The results indicate a preferential insertion of LDC at the polar interface of the bilayer and in the first half of the acyl chain, for EDC. Additionally, 2 H NMR spectra of multilamellar liposomes composed by acyl chain-perdeutero DMPC and EPC (1:4 mol%) allowed the determination of the segmental order (S-mol) and dynamics (T-1) of the acyl chain region. In accordance to the fluorescence and EPR results, changes in molecular orientation and dynamics are more prominent if the LA preferential location is more superficial, as for LDC while EDC seems to organize the acyl chain region between carbons 2-8, which is indicative of its positioning. We propose that the preferential location of LDC and EDC inside the bilayers creates a "transient site", which is related to the anesthetic potency since it could modulate the access of these molecules to their binding site(s) in the voltage-gated sodium channel. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface-enhanced resonance Raman scattering (SERRS) is used for single-molecule detection from spatially resolved 1-mum(2) sections of a Langmuir-Blodgett (LB) monolayer deposited onto a Ag film. The target molecule, his (benzimidazo) thioperylene (BZP), is dispersed in an arachidic acid monomolecular layer containing one BZP molecule per mum(2) which is also the probing area of the Raman microscope. For concentrated samples (attomole quantities in the field of view), average SERRS, surface-enhanced fluorescence (SEF), and Raman imaging, including line mapping and global images at different temperatures, were recorded. Single-molecule SERRS spectra, obtained using an LB monolayer, present changes in bandwidth and relative intensities, highlighting the properties of single-molecule SERRS that are lost in average SERRS measurements of mixed LB monolayers obtained at the same temperatures. Also, the dilute system phenomenon of blinking is discussed with regard to results obtained from LB monolayers. The dilution process used in the single-molecule LB SERRS work is independently supported by fluorescence results obtained from very dilute solutions with monomer concentrations down to 10(-12) M.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of soil organic matter functions is well known, but structural information, chemical composition and changes induced by anthropogenic factors such as tillage practices are still being researched. In the present paper were characterized Brazilian humic acids (HAs) from an Oxisol under different treatments: conventional tillage/maize-bare fallow (CT1); conventional tillage/maize rotation with soybean-bare fallow (CT2)-, no-till/maize-bare fallow (NT1); no-till/maize rotation with soybean-bare fallow (NT2); no-till/maize-cajanus (NT3) and no cultivated soil under natural vegetation (NC). Soil HA samples were analyzed by electron paramagnetic resonance (EPR), solid-state C-13 nuclear magnetic resonance (C-13 NMR), Fourier transform intra-red (FTIR) and UV-Vis fluorescence spectroscopies and elemental analysis (CHNS). The FTIR spectra of the HAs were similar for all treatments. The level of semiquinone-type free radical determined from the EPR spectra was lower for treatments no-till/maize-cajanus (NT3) and noncultivated soil (1.74 X 10(17) and 1.02 x 10(17) spins g(-1) HA, respectively), compared with 2.3 X 10(17) spins g(-1) HA for other soils under cultivation. The percentage of aromatic carbons determined by C-13 NMR also decreases for noncultivated soil to 24%, being around 30% for samples of the other treatments. The solid-state C-13 NMR and EPR spectroscopies showed small differences in chemical composition of the HA from soils where incorporation of vegetal residues was higher, showing that organic matter (OM) formed in this cases is less aromatic. The fluorescence intensities were in agreement with the percentage of aromatic carbons, determined by NMR (r = 0.97 P < 0.01) and with semiquinone content, determined by EPR (r = 0.97 P < 0.01). No important effect due to tillage system was observed in these areas after 5 years of cultivation. Probably, the studied Oxisol has a high clay content that offers protection to the clay-Fe-OM complex against strong structural alterations. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser-induced fluorescence (LIF) spectroscopy has been proposed as new method for determining the degree of humification of organic matter (OM) in whole soils. It can be also used to analyze the OM in whole soils containing large amounts of paramagnetic materials, and which are neither feasible to Electron Paramagnetic Resonance (EPR) nor to C-13 Nuclear Magnetic Resonance (NMR) spectroscopy. In the present study, 3 LIF spectroscopy was used to investigate the OM in a Brazilian Oxisol containing high concentration of Fe+3. Soil samples were collected from two areas under conventional tillage (CT), two areas under no-till management (NT) and from a non-cultivated (NC) area under natural vegetation. The results of LIF spectroscopic analysis of the top layer (0-5 cm) of whole soils showed a less aromatic OM in the non-cultivated than in the cultivated soils. This is consistent with data corresponding to HA samples extracted from the same soils and analyzed by EPR, NMR and conventional fluorescence spectroscopy. The OM of whole soils at 5-10 and 10-20 cm depth was also characterized by LIF spectroscopy.Analysis of samples of NT and NC soils showed a higher OM aromatic content at depth. This is a consequence of the accumulation of plant residues at the soil surface in quantities that are too large for microorganisms to metabolize fully, thus, resulting in less aromatic or less hurnified humic substances. In deeper soil layers, the input of residues was lower and further decomposition of humic substances by microorganisms continued, and the aromaticity and degree of humification increased with soil depth. This data indicates that the gradient of humification of OM in the NT soil was similar to those observed in natural soils. Nevertheless, the degree of humification of the OM in the soils under no-till management varied less than that corresponding to non-cultivated soils. This may be because the former have been managed under these practices for only 5 years, in contrast to the continuous humification process occurring in the natural soils. on the other band, LIF spectroscopic analysis of the CT soils showed less pronounced changes or no change in the degree of humification with depth. This indicates that the ploughing and harrowing involved in CT lead to homogenization of the soil and thereby also of the degree of humification of OM throughout the profile. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical characteristics of tellurite glasses containing silver nanoparticles (NPs) and the influence on the emission spectrum of Er 3+ ions were studied. The transitions 4f ↔ 4f from erbium ions, mainly the 4I13/2 → 4I15/2 transition that involve upconversion energy process, have a strongly dependence with the chemical structure of the rare earth ion. In the present work, silver nanparticles (NPs) embedded in the host vitreous material, show a significant enhance (or quenching) on the erbium fluorescence due the long-range electromagnetic interaction between the plasmon surface energy of the Ag NPs (Localized Surface Plasmon Resonance -LSPR) and the Er3+ ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Dynamic near infrared fluorescence imaging of the urinary tract provides a promising way to diagnose ureteropelvic junction obstruction. Initial studies demonstrated the ability to visualize urine flow and peristalsis in great detail. We analyzed the efficacy of near infrared imaging in evaluating ureteropelvic junction obstruction, renal involvement and the anatomical detail provided compared to conventional imaging modalities. Materials and Methods: Ten swine underwent partial or complete unilateral ureteral obstruction. Groups were survived for the short or the long term. Imaging was performed with mercaptoacetyltriglycine diuretic renogram, magnetic resonance urogram, excretory urogram, ultrasound and near infrared imaging. Scoring systems for ureteropelvic junction obstruction were developed for magnetic resonance urogram and near infrared imaging. Physicians and medical students graded ureteropelvic junction obstruction based on magnetic resonance urogram and near infrared imaging results. Results: Markers of vascular and urinary dynamics were quantitatively consistent among control renal units. The same markers were abnormal in obstructed renal units with significantly different times of renal phase peak, start of pelvic phase and start of renal uptake. Such parameters were consistent with those obtained with mercaptoacetyltriglycine diuretic renography. Near infrared imaging provided live imaging of urinary flow, which was helpful in identifying the area of obstruction for surgical planning. Physicians and medical students categorized the degree of obstruction appropriately for fluorescence imaging and magnetic resonance urogram. Conclusions: Near infrared imaging offers a feasible way to obtain live, dynamic images of urine flow and ureteral peristalsis. Qualitative and quantitative parameters were comparable to those of conventional imaging. Findings support fluorescence imaging as an accurate, easy to use method of diagnosing ureteropelvic junction obstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To assess the correlation between MRI findings of the pancreas with those of the heart and liver in patients with beta thalassemia; to compare the pancreas T2* MRI results with glucose and ferritin levels and labile plasma iron (LPI). Materials and methods: We retrospectively evaluated chronically transfused patients, testing glucose with enzymatic tests, serum ferritin with chemiluminescence, LPI with cellular fluorescence, and T2* MRI to assess iron content in the heart, liver, and pancreas. MRI results were compared with one another and with serum glucose, ferritin, and LPI. Liver iron concentration (LIC) was determined in 11 patients' liver biopsies by atomic absorption spectrometry. Results: 289 MRI studies were available from 115 patients during the period studied. 9.4% of patients had overt diabetes and an additional 16% of patients had impaired fasting glucose. Both pancreatic and cardiac R2* had predictive power (p < 0.0001) for identifying diabetes. Cardiac and pancreatic R2* were modestly correlated with one another (r(2) = 0.20, p < 0.0001). Both were weakly correlated with LIC (r(2) = 0.09, p < 0.0001 for both) and serum ferritin (r(2) = 0.14, p < 0.0001 and r(2) = 0.03, p < 0.02, respectively). None of the three served as a screening tool for single observations. There is a strong log-log, or power-law, relationship between ratio of signal intensity (SIR) values and pancreas R2* with an r(2) of 0.91. Conclusions: Pancreatic iron overload can be assessed by MRI, but siderosis in other organs did not correlate significantly with pancreatic hemosiderosis. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTARCT Biotechnology has enabled the modification of agricultural materials in a very precise way. Crops have been modified through the insertion of new traits or the inhibition of existing gene functions, named Genetically Modified Organism (GMO), and resulted in improved tolerance of herbicide and/or increased resistance against pests, viruses and fungi. Commercial cultivation of GMO started in 1996 and increased rapidly in 2003 according to a recently released report by the International Service for the Acquisition of Agri-Biotech Applications (ISAAA), depicted continuing consumer resistance in Europe and other part of the world. Upon these developments, the European Union regulations mandated labeling of GMOs containing food and as a consequence, the labeling of GMO containing product in the case of exceeding the1% threshold of alien DNA is required. The aim of the study is to be able to detect and quantify the GMO from the mixture of natural food components. The surface plasmon resonance (SPR) technique combined with fluorescence was used for this purpose. During the presented studies, two key issues are addressed and tried to solve; what is the best strategy to design and built an interfacial architecture of a probe oligonucletide layer either on a two dimensional surface or on an array platform; and what is the best detection method allowing for a sensitive monitoring of the hybridisation events. The study includes two parts: first part includes characterization of different PNAs on a 2D planar surface by defining affinity constants using the very well established optical method “Surface Plasmon Fluorescence Spectroscopy”(SPFS) and on the array platform by “Surface Plasmon Fluorescence Microscopy” (SPFM), and at the end comparison of the sensitivity of these two techniques. The second part is composed of detection of alien DNA in food components by using DNA and PNA catcher probes on the array platform in real-time by SPFM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last three decades, sensors based on the phenomenon of surface plasmon resonance have proven particularly suitable for real time thin film characterization, gas detection, biomolecular interaction examination and to supplement electrochemical methods. Systems based on prism coupling have been combined with fluorescence detection under the name of surface plasmon fluorescence spectroscopy to increase sensitivity even further. Alternatively, metal gratings can be employed to match photons for plasmon resonance. The real time monitoring of binding reactions not yet been reported in the combination of fluorescence detection and grating coupling. Grating-based systems promise more competitive products, because of reduced operating costs, and offer benefits for device engineering. This thesis is comprised of a comprehensive study of the suitability of grating coupling for fluorescence based analyte detection. Fundamental properties of grating coupled surface plasmon fluorescence spectroscopy are described, as well as issues related to the commercial realization of the method. Several new experimental techniques are introduced and demonstrated in order to optimize performance in certain areas and improve upon capabilities in respect to prism-based systems. Holographically fabricated gratings are characterized by atomic force microscopy and optical methods, aided by simulations and profile parameters responsible for efficient coupling are analyzed. The directional emission of fluorophores immobilized on a grating surface is studied in detail, including the magnitude and geometry of the fluorescence emission pattern for different grating constants and polarizations. Additionally, the separation between the minimum of the reflected intensity and the maximum fluorescence excitation position is examined. One of the key requirements for the commercial feasibility of grating coupling is the cheap and faithful mass production of disposable samples from a given master grating. The replication of gratings is demonstrated by a simple hot embossing method with good reproducibility to address this matter. The in-situ fluorescence detection of analyte immobilization and affinity measurements using grating coupling are described for the first time. The physical factors related to the sensitivity of the technique are assessed and the lower limit of detection of the technique is determined for an exemplary assay. Particular attention is paid to the contribution of bulk fluorophores to the total signal in terms of magnitude and polarization of incident and emitted light. Emission from the bulk can be a limiting factor for experiments with certain assay formats. For that reason, a novel optical method, based on the modulation of both polarization and intensity of the incident beam, is introduced and demonstrated to be capable of eliminating this contribution.