998 resultados para Representational level
Resumo:
It is recognized that, in general, the performance of construction projects does not meet optimal expectations. One aspect of this is the performance of each participant, which is interdependent and makes a significance impact on overall project outcomes. Of these, the client is traditionally the owner of the project, the architect or engineer is engaged as the lead designer and a contractor is selected to construct the facilities. Generally, the performance of the participants is gauged by considering three main factors, namely time, cost and quality. As the level of satisfaction is a subjective measurement, it is rarely used in the performance evaluation of construction work. Recently, various approaches to the measurement of satisfaction have been made in attempting to determine the performance of construction project outcomes – for instance client satisfaction, consultant satisfaction, contractor satisfaction, customer satisfaction and home buyer satisfaction. These not only identify the performance of the construction project, but are also used to improve and maintain relationships. In addition, these assessments are necessary for continuous improvement and enhanced cooperation between participants. The measurement of satisfaction levels primarily involves expectations and perceptions. An expectation can be regarded as a comparison standard of different needs, motives and beliefs, while a perception is a subjective interpretation that is influenced by moods, experiences and values. This suggests that the disparity between perceptions and expectations may be used to represent different levels of satisfaction. However, this concept is rather new and in need of further investigation. This paper examines the current methods commonly practiced in measuring satisfaction level and the advantages of promoting these methods. The results provided are a preliminary review of the advantages of satisfaction measurement in the construction industry and recommendations are made concerning the most appropriate methods for use in identifying the performance of project outcomes.
Resumo:
The outcomes of the construction projects can be evaluated in numerous ways. One method is to measure the satisfaction of participants as represented by the differences between their expectations and perceptions. This measurement is used widely in construction as it promises benefits, such as the improvement of product delivery, and enhances services quality by identifying some necessary changes. Commonly satisfaction measurement is gauged by evaluating the level of client satisfaction of construction performance. The measurement of customer satisfaction on the other hand, is based on the quality of the end product. This evaluation is used to encourage contractors to improve their performance to a required level and to ensure that the projects are delivered as expected- in terms of time, budget and quality. Several studies of performance measurement have indicated that contractor performance is still not satisfactory, as the outcome delivered is not as required (because of cost overruns, time overruns or because it is generally unsatisfactory). This drawback may be due to the contractors’ lack of expertise, motivation and/or satisfaction. The measurement of performance based on contractor satisfaction levels is still new and very few studies have yet taken place in the construction industry. This paper examines how the characteristics of a contracting organisation – namely its experience in the industry, background, past performance, size of organisation and financial stability- may influence its satisfaction levels with regards to project performance. Previous literature reviews and interviews are used as research tools in the preliminary investigation. The outcome is expected to present a basic understanding of contractor satisfaction measurement and its potential for improving the performance of project outcomes.
Resumo:
Over the past twenty years, the conventional knowledge management approach has evolved into a strategic management approach that has found applications and opportunities outside of business, in society at large, through education, urban development, governance, and healthcare, amongst others. Knowledge-Based Development for Cities and Socieities: Integrated Multi-Level Approaches enlightens the concepts and challenges of knowledge management for both urban environments and entire regions, enhancing the expertise and knowledge of scholars, resdearchers, practitioners, managers and urban developers in the development of successful knowledge-based development policies, creation of knowledte cities and prosperous knowledge societies. This reference creates large knowledge base for scholars, managers and urban developers and increases the awareness of the role of knowledge cities and knowledge socieiteis in the knowledge era, as well as of the challenges and opportunities for future research.
Resumo:
This paper discusses major obstacles for the adoption of low cost level crossing warning devices (LCLCWDs) in Australia and reviews those trialed in Australia and internationally. The argument for the use of LCLCWDs is that for a given investment, more passive level crossings can be treated, therefore increasing safety benefits across the rail network. This approach, in theory, reduces risk across the network by utilizing a combination of low-cost and conventional level crossing interventions, similar to what is done in the road environment. This paper concludes that in order to determine if this approach can produce better safety outcomes than the current approach, involving the incremental upgrade of level crossings with conventional interventions, it is necessary to perform rigorous risk assessments and cost-benefit analyses of LCLCWDs. Further research is also needed to determine how best to differentiate less reliable LCCLWDs from conventional warning devices through the use of different warning signs and signals. This paper presents a strategy for progressing research and development of LCLCWDs and details how the Cooperative Research Centre (CRC) for Rail Innovation is fulfilling this strategy through the current and future affordable level crossing projects.
Resumo:
The need to develop effective and efficient training programs has been recognised by all sectors engaged in training. In responding to the above need, focus has been directed to developing good competency statements and performance indicators to measure the outcomes. Very little has been done to understand how the competency statements get translated into good performance. To conceptualise this translation process, a representational model based on an information processing paradigm is proposed and discussed. It is argued that learners’ prior knowledge and the effectiveness of the instructional material are two variables that have significant bearing on how effectively the competency knowledge is translated into outcomes. To contextualise the model examples from apprentice training are used.
Resumo:
In today’s electronic world vast amounts of knowledge is stored within many datasets and databases. Often the default format of this data means that the knowledge within is not immediately accessible, but rather has to be mined and extracted. This requires automated tools and they need to be effective and efficient. Association rule mining is one approach to obtaining knowledge stored with datasets / databases which includes frequent patterns and association rules between the items / attributes of a dataset with varying levels of strength. However, this is also association rule mining’s downside; the number of rules that can be found is usually very big. In order to effectively use the association rules (and the knowledge within) the number of rules needs to be kept manageable, thus it is necessary to have a method to reduce the number of association rules. However, we do not want to lose knowledge through this process. Thus the idea of non-redundant association rule mining was born. A second issue with association rule mining is determining which ones are interesting. The standard approach has been to use support and confidence. But they have their limitations. Approaches which use information about the dataset’s structure to measure association rules are limited, but could yield useful association rules if tapped. Finally, while it is important to be able to get interesting association rules from a dataset in a manageable size, it is equally as important to be able to apply them in a practical way, where the knowledge they contain can be taken advantage of. Association rules show items / attributes that appear together frequently. Recommendation systems also look at patterns and items / attributes that occur together frequently in order to make a recommendation to a person. It should therefore be possible to bring the two together. In this thesis we look at these three issues and propose approaches to help. For discovering non-redundant rules we propose enhanced approaches to rule mining in multi-level datasets that will allow hierarchically redundant association rules to be identified and removed, without information loss. When it comes to discovering interesting association rules based on the dataset’s structure we propose three measures for use in multi-level datasets. Lastly, we propose and demonstrate an approach that allows for association rules to be practically and effectively used in a recommender system, while at the same time improving the recommender system’s performance. This especially becomes evident when looking at the user cold-start problem for a recommender system. In fact our proposal helps to solve this serious problem facing recommender systems.
Resumo:
Climate change effects are expected to substantially raise the average sea level. It is widely assumed that this raise will have a severe adverse impact on saltwater intrusion processes in coastal aquifers. In this study we hypothesize that a natural mechanism, identified as the “lifting process” has the potential to mitigate or in some cases completely reverse the adverse intrusion effects induced by sea-level rise. A detailed numerical study using the MODFLOW-family computer code SEAWAT, was completed to test this hypothesis and to understand the effects of this lifting process in both confined and unconfined systems. Our conceptual simulation results show that if the ambient recharge remains constant, the sea-level rise will have no long-term impact (i.e., it will not affect the steady-state salt wedge) on confined aquifers. Our transient confined flow simulations show a self-reversal mechanism where the wedge which will initially intrude into the formation due to the sea-level rise would be naturally driven back to the original position. In unconfined systems, the lifting process would have a lesser influence due to changes in the value of effective transmissivity. A detailed sensitivity analysis was also completed to understand the sensitivity of this self-reversal effect to various aquifer parameters.
Resumo:
We examined properties of culture-level personality traits in ratings of targets (N=5,109) ages 12 to 17 in 24 cultures. Aggregate scores were generalizable across gender, age, and relationship groups and showed convergence with culture-level scores from previous studies of self-reports and observer ratings of adults, but they were unrelated to national character stereotypes. Trait profiles also showed cross-study agreement within most cultures, 8 of which had not previously been studied. Multidimensional scaling showed that Western and non-Western cultures clustered along a dimension related to Extraversion. A culture-level factor analysis replicated earlier findings of a broad Extraversion factor but generally resembled the factor structure found in individuals. Continued analysis of aggregate personality scores is warranted.
Resumo:
In this paper we study both the level of Value-at-Risk (VaR) disclosure and the accuracy of the disclosed VaR figures for a sample of US and international commercial banks. To measure the level of VaR disclosures, we develop a VaR Disclosure Index that captures many different facets of market risk disclosure. Using panel data over the period 1996–2005, we find an overall upward trend in the quantity of information released to the public. We also find that Historical Simulation is by far the most popular VaR method. We assess the accuracy of VaR figures by studying the number of VaR exceedances and whether actual daily VaRs contain information about the volatility of subsequent trading revenues. Unlike the level of VaR disclosure, the quality of VaR disclosure shows no sign of improvement over time. We find that VaR computed using Historical Simulation contains very little information about future volatility.