937 resultados para Rendering, Blender, Ray-tracing, Rendering-engine, Light-Behaviour
Resumo:
We describe the preparation and some optical properties of high refractive index TeO2-PbO-TiO2 glass system. Highly homogeneous glasses were obtained by agitating the mixture during the melting process in an alumina crucible. The characterization was done by X-ray diffraction, Raman scattering, light absorption and linear refractive index measurements. The results show a change in the glass structure as the PbO content increases: the TeO4 trigonal bipyramids characteristics of TeO2 glasses transform into TeO3 trigonal pyramids. However, the measured refractive indices are almost independent of the glass composition. We show that third-order nonlinear optical susceptibilities calculated from the measured refractive indices using Lines' theoretical model are also independent of the glass composition.
Resumo:
A visual SLAM system has been implemented and optimised for real-time deployment on an AUV equipped with calibrated stereo cameras. The system incorporates a novel approach to landmark description in which landmarks are local sub maps that consist of a cloud of 3D points and their associated SIFT/SURF descriptors. Landmarks are also sparsely distributed which simplifies and accelerates data association and map updates. In addition to landmark-based localisation the system utilises visual odometry to estimate the pose of the vehicle in 6 degrees of freedom by identifying temporal matches between consecutive local sub maps and computing the motion. Both the extended Kalman filter and unscented Kalman filter have been considered for filtering the observations. The output of the filter is also smoothed using the Rauch-Tung-Striebel (RTS) method to obtain a better alignment of the sequence of local sub maps and to deliver a large-scale 3D acquisition of the surveyed area. Synthetic experiments have been performed using a simulation environment in which ray tracing is used to generate synthetic images for the stereo system
Resumo:
In several computer graphics areas, a refinement criterion is often needed to decide whether to go on or to stop sampling a signal. When the sampled values are homogeneous enough, we assume that they represent the signal fairly well and we do not need further refinement, otherwise more samples are required, possibly with adaptive subdivision of the domain. For this purpose, a criterion which is very sensitive to variability is necessary. In this paper, we present a family of discrimination measures, the f-divergences, meeting this requirement. These convex functions have been well studied and successfully applied to image processing and several areas of engineering. Two applications to global illumination are shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing. We obtain significantly better results than with classic criteria, showing that f-divergences are worth further investigation in computer graphics. Also a discrimination measure based on entropy of the samples for refinement in ray-tracing is introduced. The recursive decomposition of entropy provides us with a natural method to deal with the adaptive subdivision of the sampling region
Resumo:
A visual SLAM system has been implemented and optimised for real-time deployment on an AUV equipped with calibrated stereo cameras. The system incorporates a novel approach to landmark description in which landmarks are local sub maps that consist of a cloud of 3D points and their associated SIFT/SURF descriptors. Landmarks are also sparsely distributed which simplifies and accelerates data association and map updates. In addition to landmark-based localisation the system utilises visual odometry to estimate the pose of the vehicle in 6 degrees of freedom by identifying temporal matches between consecutive local sub maps and computing the motion. Both the extended Kalman filter and unscented Kalman filter have been considered for filtering the observations. The output of the filter is also smoothed using the Rauch-Tung-Striebel (RTS) method to obtain a better alignment of the sequence of local sub maps and to deliver a large-scale 3D acquisition of the surveyed area. Synthetic experiments have been performed using a simulation environment in which ray tracing is used to generate synthetic images for the stereo system
Resumo:
The strong intermolecular interactions mediated by short hydrophobic sequences (e.g., 17-20, -L-Leu-L-Val-L-Phe-L-Phe-) in the middle of A beta are known to play a crucial role in the neuropathology of Alzheimer's disease. FTIR, TEM and Congo red binding studies indicated that a series of L-Ala substituted terminally protected peptides related to the sequence 17-20 of the beta-amyloid peptide, adopted D-sheet conformations. However, the Aib-modified analogues disrupt the D-sheet structure and switch over to a 310 helix with increasing number of Aib residues. X-ray crystallography shed some light on the change from sheet to helix at atomic resolution. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A critical analysis of single crystal X-ray diffraction studies on a series of terminally protected tripeptides containing a centrally positioned Aib (alpha-aminoisobutyric acid) residue has been reported. For the tripeptide series containing Boc-Ala-Aib as corner residues, all the reported peptides formed distorted type II beta-turn structures. Moreover, a series of Phe substituted analogues ( tripeptides with Boc-Phe-Aib) have also shown different beta-turn conformations. However, the Leu-modified analogues (tripeptides with Boc-Leu-Aib) disrupt the concept of beta-turn formation and adopt various conformations in the solid state. X-ray crystallography sheds some light on the conformational heterogeneity at atomic resolution. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The structural characterization of subtilisin mesoscale clusters, which were previously shown to induce supramolecular order in biocatalytic self-assembly of Fmocdipeptides, was carried out by synchrotron small-angle X-ray, dynamic, and static light scattering measurements. Subtilisin molecules self-assemble to form supramolecular structures in phosphate buffer solutions. Structural arrangement of subtilisin clusters at 55 degrees Centigrade was found to vary systematically with increasing enzyme concentration. Static light scattering measurements showed the cluster structure to be consistent with a fractal-like arrangement, with fractal dimension varying from 1.8 to 2.6 with increasing concentration for low to moderate enzyme concentrations. This was followed by a structural transition around the enzyme concentration of 0.5 mg mL-1 to more compact structures with significantly slower relaxation dynamics, as evidenced by dynamic light scattering measurements. These concentration-dependent supramolecular enzyme clusters provide tunable templates for biocatalytic self-assembly.
Resumo:
The spatial structure of beta-plane Rossby waves in a sinusoidal basic zonal flow U 0cos(γ,y) is determined analytically in the (stable) asymptotic limit of weak shear, U 0γ2 0/β≈1. The propagating neutral normal modes are found to take their greatest amplitude in the region of maximum westerly flow, while their most rapid phase variation is achieved in the region of maximum easterly flow. These results are shown to be consistent with what is obtained by ray-tracing methods in the limit of small meridional disturbance wavelength.
Resumo:
Observations of the amplitudes and Doppler shifts of received HF radio waves are compared with model predictions made using a two-dimensional ray-tracing program. The signals are propagated over a sub-auroral path, which is shown to lie along the latitudes of the mid-latitude trough at times of low geomagnetic activity. Generalizing the predictions to include a simple model of the trough in the density and height of the F2 peak enables the explanation of the anomalous observed diurnal variations. The behavior of received amplitude, Doppler shift, and signal-to-noise ratio as a function of the Kp index value, the time of day, and the season (in 17 months of continuous recording) is found to agree closely with that predicted using the statistical position of the trough as deduced from 8 years of Alouette satellite soundings. The variation in the times of the observation of large signal amplitudes with the Kp value and the complete absence of such amplitudes when it exceeds 2.75 are two features that implicate the trough in these effects.
Resumo:
The propagation of 7.335 MHz, c.w. signals over a 5212 km sub-auroral, west-east path is studied. Measurements and semi-empirical predictions are made of the amplitude distributions and Doppler shifts of the received signals. The observed amplitude distribution is fitted with one produced by a numerical fading model, yielding the power losses suffered by the signals during propagation via the predominating modes. The signals are found to suffer exceptionally low losses at certain local times under geomagnetically quiet conditions. The mid-latitude trough in the F2 peak ionization density is predicted by a statistical model to be at the latitudes of this path at these times and at low Kp values. A sharp cut-off in low-power losses at a mean Kp of 2.75 strongly implicates the trough in the propagation of these signals. The Doppler shifts observed at these times cannot be explained by a simple ray-tracing model. It is shown however, that a simple extension of this model to allow for the trough can reproduce the form of the observed diurnal variation.
Resumo:
The measured power losses and Doppler shifts of h.f. radio waves propagated over a long, west-east, sub-auroral path are found to exhibit features which cannot be explained by simple predictions and models. Both theory and the limited available data indicate that a bottomside F2-layer depletion should be present below the topside mid-latitude trough. Introducing this into the models (using the mean statistical positions of the trough deduced from Alouette I and II soundings) is shown to explain many of these features. From the Doppler shifts and a simple ray-tracing model the height of the depleted F2-peak inside the trough is deduced to be greater than its value outside the trough by an amount of the order of only 30–80 km.
Resumo:
The general 1-D theory of waves propagating on a zonally varying flow is developed from basic wave theory, and equations are derived for the variation of wavenumber and energy along ray paths. Different categories of behaviour are found, depending on the sign of the group velocity (cg) and a wave property, B. For B positive the wave energy and the wave number vary in the same sense, with maxima in relative easterlies or westerlies, depending on the sign of cg. Also the wave accumulation of Webster and Chang (1988) occurs where cg goes to zero. However for B negative they behave in opposite senses and wave accumulation does not occur. The zonal propagation of the gravest equatorial waves is analysed in detail using the theory. For non-dispersive Kelvin waves, B reduces to 2, and analytic solution is possible. B is positive for all the waves considered, except for the westward moving mixed Rossby-gravity (WMRG) wave which can have negative as well as positive B. Comparison is made between the observed climatologies of the individual equatorial waves and the result of pure propagation on the climatological upper tropospheric flow. The Kelvin wave distribution is in remarkable agreement, considering the approximations made. Some aspects of the WMRG and Rossby wave distributions are also in qualitative agreement. However the observed maxima in these waves in the winter westerlies in the eastern Pacific and Atlantic are not consistent with the theory. This is consistent with the importance of the sources of equatorial waves in these westerly duct regions due to higher latitude wave activity.
Resumo:
A single habit parameterization for the shortwave optical properties of cirrus is presented. The parameterization utilizes a hollow particle geometry, with stepped internal cavities as identified in laboratory and field studies. This particular habit was chosen as both experimental and theoretical results show that the particle exhibits lower asymmetry parameters when compared to solid crystals of the same aspect ratio. The aspect ratio of the particle was varied as a function of maximum dimension, D, in order to adhere to the same physical relationships assumed in the microphysical scheme in a configuration of the Met Office atmosphere-only global model, concerning particle mass, size and effective density. Single scattering properties were then computed using T-Matrix, Ray Tracing with Diffraction on Facets (RTDF) and Ray Tracing (RT) for small, medium, and large size parameters respectively. The scattering properties were integrated over 28 particle size distributions as used in the microphysical scheme. The fits were then parameterized as simple functions of Ice Water Content (IWC) for 6 shortwave bands. The parameterization was implemented into the GA6 configuration of the Met Office Unified Model along with the current operational long-wave parameterization. The GA6 configuration is used to simulate the annual twenty-year short-wave (SW) fluxes at top-of-atmosphere (TOA) and also the temperature and humidity structure of the atmosphere. The parameterization presented here is compared against the current operational model and a more recent habit mixture model.
Resumo:
There is an increasing interest in lipid nanoparticles because of their suitability for several administration routes. Thus, it becomes even more relevant the physicochemical characterization of lipid materials with respect to their polymorphism, lipid miscibility and stability, as well as the assessment of the effect of surfactant on the type and structure of these nanoparticles. This work focuses on the physicochemical characterization of lipid matrices composed of pure stearic acid or of mixtures of stearic acid-capric/caprylic triglycerides, for drug delivery. The lipids were analyzed by Differential Scanning Calorimetry (DSC), Wide Angle X-ray Diffraction (WAXD), Polarized Light Microscopy (PLM) and hydrophilic-lipophilic balance (HLB) in combination with selected surfactants to determine the best solid-to-liquid ratio. Based on the results obtained by DSC and WAXD, the selected qualitative and quantitative composition contributed for the production of stable nanoparticles, since the melting and the tempering processes provided important information on the thermodynamic stability of solid lipid matrices. The best HLB value obtained for stearic acid-capric/caprylic triglycerides was 13.8, achieved after combining these lipids with accepted surfactants (trioleate sorbitan and polysorbate 80 in the ratio of 10:90). The proposed combinations were shown useful to obtain a stable emulsion to be used as intermediate form for the production of lipid nanoparticles. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Based on previous observational studies on cold extreme events over southern South America, some recent studies suggest a possible relationship between Rossby wave propagation remotely triggered and the occurrence of frost. Using the concept of linear theory of Rossby wave propagation, this paper analyzes the propagation of such waves in two different basic states that correspond to austral winters with maximum and minimum generalized frost frequency of occurrence in the Wet Pampa (central-northwest Argentina). In order to determine the wave trajectories, the ray tracing technique is used in this study. Some theoretical discussion about this technique is also presented. The analysis of the basic state, from a theoretical point of view and based on the calculation of ray tracings, corroborates that remotely excited Rossby waves is the mechanism that favors the maximum occurrence of generalized frosts. The basic state in which the waves propagate is what conditions the places where they are excited. The Rossby waves are excited in determined places of the atmosphere, propagating towards South America along the jet streams that act as wave guides, favoring the generation of generalized frosts. In summary, this paper presents an overview of the ray tracing technique and how it can be used to investigate an important synoptic event, such as frost in a specific region, and its relationship with the propagation of large scale planetary waves.