947 resultados para Removal of organic matter


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipid components of hydrothermal deposits from the unusual field at 14°45'N MAR and from the typical field at 29°N MAR were studied. For the first time mixed nature of organic matter (OM) from hydrothermal sulfide deposits was established with use of biochemical, gas chromatographic, and molecular methods of studies. In composition of OM lipids of phytoplankton, those of chemosynthesis bacteria and non-biogenic synthesis lipids were determined. Specific conditions of localization of sulfide deposits originated from ''black smokers'' (reducing conditions, absence of free oxygen, presence of reduced sulfur preventing OM from decomposition) let biogenic material, including bacterial one, be preserved in sulfide deposits. The hydrothermal system at 14°45'N MAR is characterized by geological, geochemical and thermodynamic conditions allowing abiogenic synthesis of methane and petroleum hydrocarbons. For sulfide deposits at 29°N and other active hydrothermal fields known at MAR, abiogenic synthesis of hydrocarbons occurs in lower scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research has been carried out in the Nha Trang Bay (Southern Vietnam, South China Sea) at a section from the estuary of the Cai River to the marine part of the bay, as well as in the area of coral reefs. River- and sea waters, suspended matter, and bottom sediments are studies. Data on dissolved organic carbon and total nitrogen in water are obtained. Organic carbon concentration is estimated in suspended matter; organic carbon and molecular and group compositions of n-alkanes are determined in bottom sediments. Molecular and group compositions of n-alkanes in bottom sediments of the landfill made it possible to identify three types of organic matter (OM): marine, mixed, and mainly of terrigenous origin. All these types of OM are closely related to specificity of sedimentation and hydrodynamics of waters in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of an ongoing program of organic geochemical studies of sediments recovered by the Deep Sea Drilling Project, we have analyzed the types, amounts, and thermal alteration indices of organic matter collected from the Pacific continental margin of southern Mexico on Leg 66. The samples were pieces of core frozen aboard ship. Some of them were analyzed by pyrolysis, heavy C15+ hydrocarbons, and nonhydrocarbons to help determine their origin and hydrocarbon potential. Our main objectives were to find out how much organic matter was being deposited; to establish whether it derived from marine or terrestrial sources; to determine the controls of deposition of organic matter; to estimate the hydrocarbon potential of the drilled section; and to compare and contrast organic sedimentation here with that on other margins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using methods of analysis from organic geochemistry and organic petrography, we investigated six Pliocene to Maestrichtian samples from DSDP Site 612 and five Pliocene to Eocene samples from DSDP Site 613 for the quantity, type, and thermal maturity of organic matter. At both sites, organic carbon content is low in the Eocene samples (0.10 to 0.20%) and relatively high in the Pliocene/Miocene samples (0.87 to 1.15%). The Maestrichtian samples from Site 612 contain about 0.6% organic carbon. The organic matter is predominantly terrigenous, as indicated by low hydrogen index values from Rock-Eval pyrolysis and the dominance of long-chain wax alkanes in the extractable hydrocarbons. The organic matter is at a low level of thermal maturity; measured vitrinite reflectance values were between 0.27 and 0.44%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic geochemical and organic petrographic methods were used to study three Lower to middle Cretaceous sediment samples from Hole 535 in the southeastern Gulf of Mexico for organic matter contents and origin and level of maturation. All three samples contain mixed kerogen Type II/III organic matter with a maturity corresponding to about 0.4% vitrinite reflectance. The marine component increases with stratigraphic age, and microbial reworking of the organic matter is significant in each age. The lower two samples of Hauterivian to Valanginian age appear to be impregnated (or contaminated) with soluble polar organic compounds, but there is only a weak indication for the presence of more mature, nonindigenous hydrocarbons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic geochemical and visual kerogen analyses were carried out on approximately 50 samples from Leg 81 (Rockall Plateau, North Atlantic). The sediments are from four sites (Sites 552-555), Pleistocene to Paleocene in age, and represent significantly different depositional environments and sources of organic matter. The Pleistocene glacial-interglacial cycles show differences in sedimentary organic matter based on Rock-Eval pyrolysis, organic phosphorus, and pyrolysis/mass-spectrometry analyses. Glacial samples contain more organic carbon, with a larger proportion of reworked organic matter. This probably reflects increased erosion of continental and shelf areas as a result of low sea level stands. Inter glacial samples contain a larger proportion of marine organic matter as determined by organic phosphorus and pyrolysis analyses. This immature, highly oxidized marine organic matter may be associated with the skeletal organic matrix of calcareous organisms. In addition, Rock-Eval data indicate no significant inorganic-carbonate contribution to the S3 pyrolysis peak. The Pliocene-Miocene sediments consist of pelagic, biogenic carbonates. The organic matter is similar to that of the Pleistocene interglacial periods; a mixture of oxidized marine organic matter and reworked, terrestrial detritus. The Paleocene-Oligocene organic matter reflects variations in source and depositional factors associated with the isolation of Rockall from Greenland. Paleocene sediments contain primarily terrestrial organic matter with evidence of in situ thermal stress resulting from interbedded lava flows. Late Paleocene and early Eocene organic matter suggests a highly oxidized marine environment, with major periods of deposition of terrestrially derived organic matter. These fluctuations in organic-matter type are probably the result of episodic shallowing and deepening of Rockall Basins. The final stage of Eocene/Oligocene sedimentation records the accelerating subsidence of Rockall and its isolation from terrestrial sources (Rockall and Greenland). This is shown by the increasingly marine character of the organic matter. The petroleum potential of sediments containing more than 0.5% organic carbon is poor because of their thermal immaturity and their highly oxidized and terrestrial organic-matter composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triassic (Carnian-Rhaetian) continental margin sediments from the Wombat Plateau off northwest Australia (Sites 759, 760, 761, and 764) contain mainly detrital organic matter of terrestrial higher plant origin. Although deposited in a nearshore deltaic environment, little liptinitic material was preserved. The dominant vitrinites and inertinites are hydrogen-lean, and the small quantities of extractable bitumen contain w-alkanes and bacterial hopanoid hydrocarbons as the most dominant single gas-chromatography-amenable compounds. Lower Cretaceous sediments on the central Exmouth Plateau (Sites 762 and 763) farther south in general have an organic matter composition similar to that in the Wombat Plateau sediments with the exception of a smaller particle size of vitrinites and inertinites, indicating more distal transport and probably deposition in deeper water. Nevertheless, organic matter preservation is slightly better than in the Triassic sediments. Long-chain fatty acids, as well as aliphatic ketones and alcohols, are common constituents in the Lower Cretaceous sediments in addition to n-alkanes and hopanoid hydrocarbons. Thin, black shale layers at the Cenomanian/Turonian boundary, although present at several sites (Sites 762 and 763 on the Exmouth Plateau, Site 765 in the Argo Abyssal Plain, and Site 766 on the continental margin of the Gascoyne Abyssal Plain), are particularly enriched in organic matter only at Site 763 (up to 26%). These organic-matter-rich layers contain mainly bituminite of probable fecal-pellet origin. Considering the high organic carbon content, the moderate hydrogen indices of 350-450 milligrams of hydrocarbon-type material per gram of Corg, the maceral composition, and the low sedimentation rates in the middle Cretaceous, we suggest that these black shales were accumulated in an area of oxygen-depleted bottom-water mass (oceanwide reduced circulation?) underlying an oxygen-rich water column (in which most of the primary biomass other than fecal pellets is destroyed) and a zone of relatively high bioproductivity. Differences in organic matter accumulation at the Cenomanian/Turonian boundary at different sites off northwest Australia are ascribed to regional variations in primary bioproductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of a continuing program of organic-geochemistry studies of sediments recovered by the Deep Sea Drilling Project, we have analyzed the types, amounts, and thermal-alteration indices of organic matter in samples collected from the landward wall of the Japan Trench on Legs 56 and 57. The samples were canned aboard ship, enabling us to measure also their gas contents. In addition, we analyzed the heavy C15+ hydrocarbons, NSO compounds, and asphaltenes extracted from selected samples. Our samples form a transect down the trench wall, from Holes 438 and 438A (water depth 1558 m), through Holes 435 and 435A (water depth 3401 m), and 440 (water depth 4507 m), to Holes 434 and 434B (water depth 5986 m). The trench wall is the continental slope of Japan. Its sediments are Cenozoic hemipelagic diatomaceous muds that were deposited where they are found or have slumped from farther up the slope. Their terrigenous components probably were deposited from near-bottom nepheloid layers transported by bottom currents or in low density flows (Arthur et al., 1978). Our objective was to find out what types of organic matter exist in the sediment and to estimate their potential for generation of hydrocarbons.