902 resultados para Remote voting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The great majority of the courses on science and technology areas where lab work is a fundamental part of the apprenticeship was not until recently available to be taught at distance. This reality is changing with the dissemination of remote laboratories. Supported by resources based on new information and communication technologies, it is now possible to remotely control a wide variety of real laboratories. However, most of them are designed specifically to this purpose, are inflexible and only on its functionality they resemble the real ones. In this paper, an alternative remote lab infrastructure devoted to the study of electronics is presented. Its main characteristics are, from a teacher's perspective, reusability and simplicity of use, and from a students' point of view, an exact replication of the real lab, enabling them to complement or finish at home the work started at class. The remote laboratory is integrated in the Learning Management System in use at the school, and therefore, may be combined with other web experiments and e-learning strategies, while safeguarding security access issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a collaborative virtual learning environment, which includes technologies such as 3D virtual representations, learning and content management systems, remote experiments, and collaborative learning spaces, among others. It intends to facilitate the construction, management and sharing of knowledge among teachers and students, in a global perspective. The environment proposes the use of 3D social representations for accessing learning materials in a dynamic and interactive form, which is regarded to be closer to the physical reality experienced by teachers and students in a learning context. A first implementation of the proposed extended immersive learning environment, in the area of solid mechanics, is also described, including the access to theoretical contents and a remote experiment to determine the elastic modulus of a given object.These instructions give you basic guidelines for preparing camera-ready papers for conference proceedings. Use this document as a template if you are using Microsoft Word 6.0 or later. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further. Define all symbols used in the abstract. Do not cite references in the abstract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote engineering (also known as online engineering) may be defined as a combination of control engineering and telematics. In this area, specific activities require computacional skills in order to develop projects where electrical devives are monitored and / or controlled, in an intercative way, through a distributed network (e.g. Intranet or Internet). In our specific case, we will be dealing with an industrial plant. Within the last few years, there has been an increase in the number of activities related to remote engineering, which may be connected to the phenomenon of the large extension experienced by the Internet (e.g. bandwith, number of users, development tools, etc.). This increase opens new and future possibilities to the implementation of advance teleworking (or e-working) positions. In this paper we present the architecture for a remote application, accessible through the Internet, able to monitor and control a roller hearth kiln, used in a ceramics industry for firing materials. The proposed architecture is based on a micro web server, whose main function is to monitor and control the firing process, by reading the data from a series of temperature sensors and by controlling a series of electronic valves and servo motors. This solution is also intended to be a low-cost alternative to other potential solutions. The temperature readings are obtained through K-type thermopairs and the gas flow is controlled through electrovalves. As the firing process should not be stopped before its complete end, the system is equipped with a safety device for that specific purpose. For better understanding the system to be automated and its operation we decided to develop a scale model (100:1) and experiment on it the devised solution, based on a Micro Web Server.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commonly, when a weblab is developed to support remote experiments in sciences and engineering courses, a particular hardware/software architecture is implemented. However, the existence of several technological solutions to implement those architectures difficults the emergence of a standard, both at hardware and software levels. While particular solutions are adopted assuming that only qualified people may implement a weblab, the control of the physical space and the power consumption are often forgotten. Since controlling these two previous aspects may increase the quality of the weblab hosting the remote experiments, this paper proposes the useof a new layer implemented by a domotic system bus with several devices (e.g. lights, power sockets, temperature sensors, and others) able to be controlled through the Internet. We also provide a brief proof-of-concept in the form of a weblab equipped with a simple domotic system usually implemented in smart houses. The added value to the remote experiment hosted at the weblab is also identified in terms of power savings and environment conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote Experimentation is an educational resource that allows teachers to strengthen the practical contents of science & engineering courses. However, building up the interfaces to remote experiments is not a trivial task. Although teachers normally master the practical contents addressed by a particular remote experiment they usually lack the programming skills required to quickly build up the corresponding web interface. This paper describes the automatic generation of experiment interfaces through a web-accessible Java application. The application displays a list of existent modules and once the requested modules have been selected, it generates the code that enables the browser to display the experiment interface. The tools? main advantage is enabling non-tech teachers to create their own remote experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this paper is to discuss the benefits and challenges of yielding an inter-continental network of remote laboratories supported and used by both European and Latin American Institutions of Higher Education. Since remote experimentation, understood as the ability to carry out real-world experiments through a simple Web browser, is already a proven solution for the educational community as a supplement to on-site practical lab work (and in some cases, namely for distance learning courses, a replacement to that work), the purpose is not to discuss its technical, pedagogical, or economical strengths, but rather to raise and try to answer some questions about the underlying benefits and challenges of establishing a peer-to-peer network of remote labs. Ultimately, we regard such a network as a constructive mechanism to help students gain the working and social skills often valued by multinational/global companies, while also providing awareness of local cultural aspects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of remote labs in undergraduate courses has been reported in literature several times since the mid 90's. Nevertheless, very few articles present results about the correspondent learning gains obtained by students, and in what conditions those systems can be more efficient, thus suggesting a lack of data concerning their pedagogical effectiveness. This paper addresses such a gap by presenting some initial findings concerning the use of a remote lab (VISIR), in a large undergraduate course on Physics, with over 550 students enrolled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an online mechanism that can evaluate the sensitivity of single event upsets (SEUs) of field programmable gate arrays (FPGAs). The online detection mechanism cyclically reads and compares the values form the external and internal configuration memories, taking into account the mask information. This remote detection method also signals any mismatch as a result of a SEU that affects both used and not-used FPGA parts, which maximizes the monitored area. By utilizing an external, Web-accessible controller that is connected to the test infrastructure, the possibility of running the same operation in a remote manner is enabled. Moreover, the need for a local memory to store the mask values is also eliminated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote laboratories are an emergent technological and pedagogical tool at all education levels, and their widespread use is an important part of their own improvement and evolution. This paper describes several issues encountered on laboratorial classes, on higher education courses, when using remote laboratories based on PXI systems, either using the VISIR system or an alternate in-house solution. Three main issues are presented and explained, all reported by teachers, that gave support to students' use of remote laboratories. The first issue deals with the need to allow students to select the actual place where an ammeter is to be inserted on electric circuits, even incorrectly, therefore emulating real-world difficulties. The second one deals with problems with timing when several measurements are required at short intervals, as in the discharge cycle of a capacitor. In addition, the last issue deals with the use of a multimeter in dc mode when reading ac values, a use that collides with the lab settings. All scenarios are presented and discussed, including the solution found for each case. The conclusion derived from the described work is that the remote laboratories area is an expanding field, where practical use leads to improvement and evolution of the available solutions, requiring a strict cooperation and information-sharing between all actors, i.e., developers, teachers, and students.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

THE ninth edition of the International Conference on Remote Engineering and Virtual Instrumentation (REV) [1] was held at the Faculty of Engineering of the University of Deusto, Bilbao (Spain), from the 4th to the 6th of July, 2012. A world-class research community in the subject of remote and virtual laboratories joined the event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the pedagogical community, Serious Games have arisen as a viable alternative to traditional course-based learning materials. Until now, they have been based strictly on software solutions. Meanwhile, research into Remote Laboratories has shown that they are a viable, low-cost solution for experimentation in an engineering context, providing uninterrupted access, low-maintenance requirements, and a heightened sense of reality when compared to simulations. This paper will propose a solution where both approaches are combined to deliver a Remote Laboratory-based Serious Game for use in engineering and school education. The platform for this system is the WebLab-Deusto Framework, already well-tested within the remote laboratory context, and based on open standards. The laboratory allows users to control a mobile robot in a labyrinth environment and take part in an interactive game where they must locate and correctly answer several questions, the subject of which can be adapted to educators' needs. It also integrates the Google Blockly graphical programming language, allowing students to learn basic programming and logic principles without needing to understand complex syntax.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning is not only happening in school or university; it is also an important aspect of the daily life that allows students to remain in their biological and physical environment helping to reshape it, by applying what they have learnt. Today, the higher education sector is a part of important strategies used by countries in order to foster their development. Despite its geographical location, i.e. its closeness to Europe and Asia, the MENA (Middle East and North Africa) region still needs an integrated strategy for the advancement, reform, and update of its higher educational landscape. Although some solutions have been experimented in the region in the field of higher education, they have not been able to raise the quality of education to the level comparable that observed in developed countries. In other words, many MENA higher education systems are facing problems, for which solution ought to be sought. We analyse the situation of higher education systems in the MENA countries and the factors that affect the delay in achieving the level of education existing in other world regions, e.g. Europe, especially in the higher education sector. During the discussion, the impact of new technology-enhanced tools, such as remote laboratories, in the process of development and consolidation of MENA universities, is particularly stressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the application of Design State Exploration techniques in the development of a remote lab for projectile motion experiments. The application was enabled by the existence of two independent teams: one composed of a series of internships that started first and another with two grantees that started a few months later. The paper presents evidence on how this approach provided gains in the development process conducted by the second team that benefited from design state exploration studies performed by the first team. This particular aspect is highlighted in relation to the work already presented in the 10th Remote Engineering and Virtual Instrumentation (REV) conference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes how to extend the access to remote experiments from mobile devices, aiming to better engage digital native students who expect a more interactive and ubiquitous access mode. The extension is based on features of HTML5 and the jQuery Mobile framework, which allow accessing the experiments from different operating systems via the browser or native applications. As a result, users have a richer interaction mode with the experiments, which includes access from simple hand-held devices such as smartphones and PDAs. Extending the access to remote experiments, from simple devices, enables its use in other educational stages, such as high schools, where teachers struggle to engage students in STEM learning. By enabling students to use their everyday "technological companions", e.g. cellular phones, to access remote experiments, we seek to increase the educational value of this technology-enhanced learning resource.