933 resultados para Remote education
Resumo:
Abstract Objective: Student retention at regional universities is important in addressing regional and remote workforce shortages. Students attending regional universities are more likely to work in regional areas. First year experience at university plays a key role in student retention. This study aimed to explore factors influencing the first year experience of occupational therapy students at a regional Australian university. Design: Surveys were administered to 58 second year occupational therapy students in the first week of second year. Data were analysed using descriptive statistics, inferential statistics (Pearson χ2; Spearman rho) and summarising descriptive responses. Setting: An Australian regional university. Participants: Second year undergraduate occupational therapy students. Main outcome measures: Factors influencing students’ decisions to study and continue studying occupational therapy; factors enhancing first year experience of university. Results: Fifty-four students completed the survey (93.1%). A quarter (25.9%) of students considered leaving the course during the first year. The primary influence for continuing was the teaching and learning experience. Most valued supports were orientation week (36.7%) and the first year coordinator (36.7%). Conclusion: The importance of the first year experience in retaining occupational therapy students is highlighted. Engagement with other students and staff and academic support are important factors in facilitating student retention. It is important to understand the unique factors influencing students’ decisions, particularly those from regional and remote areas, to enter and continue in tertiary education to assist in implementing supports and strategies to improve student retention.
Resumo:
The goal of this paper is to discuss the benefits and challenges of yielding an inter-continental network of remote laboratories supported and used by both European and Latin American Institutions of Higher Education. Since remote experimentation, understood as the ability to carry out real-world experiments through a simple Web browser, is already a proven solution for the educational community as a supplement to on-site practical lab work (and in some cases, namely for distance learning courses, a replacement to that work), the purpose is not to discuss its technical, pedagogical, or economical strengths, but rather to raise and try to answer some questions about the underlying benefits and challenges of establishing a peer-to-peer network of remote labs. Ultimately, we regard such a network as a constructive mechanism to help students gain the working and social skills often valued by multinational/global companies, while also providing awareness of local cultural aspects.
Resumo:
The use of remote labs in undergraduate courses has been reported in literature several times since the mid 90's. Nevertheless, very few articles present results about the correspondent learning gains obtained by students, and in what conditions those systems can be more efficient, thus suggesting a lack of data concerning their pedagogical effectiveness. This paper addresses such a gap by presenting some initial findings concerning the use of a remote lab (VISIR), in a large undergraduate course on Physics, with over 550 students enrolled.
Resumo:
Remote laboratories are an emergent technological and pedagogical tool at all education levels, and their widespread use is an important part of their own improvement and evolution. This paper describes several issues encountered on laboratorial classes, on higher education courses, when using remote laboratories based on PXI systems, either using the VISIR system or an alternate in-house solution. Three main issues are presented and explained, all reported by teachers, that gave support to students' use of remote laboratories. The first issue deals with the need to allow students to select the actual place where an ammeter is to be inserted on electric circuits, even incorrectly, therefore emulating real-world difficulties. The second one deals with problems with timing when several measurements are required at short intervals, as in the discharge cycle of a capacitor. In addition, the last issue deals with the use of a multimeter in dc mode when reading ac values, a use that collides with the lab settings. All scenarios are presented and discussed, including the solution found for each case. The conclusion derived from the described work is that the remote laboratories area is an expanding field, where practical use leads to improvement and evolution of the available solutions, requiring a strict cooperation and information-sharing between all actors, i.e., developers, teachers, and students.
Resumo:
Within the pedagogical community, Serious Games have arisen as a viable alternative to traditional course-based learning materials. Until now, they have been based strictly on software solutions. Meanwhile, research into Remote Laboratories has shown that they are a viable, low-cost solution for experimentation in an engineering context, providing uninterrupted access, low-maintenance requirements, and a heightened sense of reality when compared to simulations. This paper will propose a solution where both approaches are combined to deliver a Remote Laboratory-based Serious Game for use in engineering and school education. The platform for this system is the WebLab-Deusto Framework, already well-tested within the remote laboratory context, and based on open standards. The laboratory allows users to control a mobile robot in a labyrinth environment and take part in an interactive game where they must locate and correctly answer several questions, the subject of which can be adapted to educators' needs. It also integrates the Google Blockly graphical programming language, allowing students to learn basic programming and logic principles without needing to understand complex syntax.
Resumo:
In this article the authors describe the application development RExMobile and the importance of remote experimentation via mobile devices, especially smartphones simple, beyond the space provided for this application in education. The article deals the creation, software and hardware that provide an interactive and dynamic way to attract more students to use these experiments remote, serving as support to teachers to science teaching from its initial series. The ease and availability of smartphones, even these students of basic education, permits the reach of new users and in different places. Thus, the practice of remote experimentation in mobile devices enables new spaces for access and interaction. Are used for developing software free or low cost, HTML5 and jQuery Mobile framework, that enable the creation of pages compatible with different mobile operating systems such as iOS, Android, Windows Phone, some Symbian, among others. Also are demonstrated patterns layouts that allow greater accessibility.
Resumo:
Remote Laboratories are an emergent technological and pedagogical tool at all education levels, and their widespread use is an important part of their own improvement and evolution. This paper describes several issues encountered on laboratorial classes, on higher education courses, when using remote laboratories based on PXI systems, either using the VISIR system or an alternate in-house solution. Three main issues are presented and explained, all reported by teachers that gave support to students use of remote laboratories. The first issue deals with the need to allow students to select the actual place where an ammeter is to be inserted on electric circuits, even incorrectly, therefore emulating real world difficulties. The second one deals with problems with timing when several measurements are required at short intervals, as in the discharge cycle of a capacitor. And the last issue deals with the use of a multimeter in DC mode when reading AC values, a use that collides with the lab settings. All scenarios are presented and discussed including the solution found for each case. The conclusion derived from the described work is that the remote laboratories area is an expanding field, where practical use leads to improvement and evolution of the available solutions, requiring a strict cooperation and information sharing between all actors, i.e. developers, teachers and students.
Resumo:
As technology is increasingly being seen as a facilitator to learning, open remote laboratories are increasingly available and in widespread use around the world. They provide some advantages over traditional hands-on labs or simulations. This paper presents the results of integrating the open remote laboratory VISIR into several courses, in various contexts and using various methodologies. These integrations, all related to higher education engineering, were designed by teachers with different perspectives to achieve a range of learning outcomes. The degree to which these VISIR-related outcomes were accomplished is discussed. The results reflect the levels of student engagement and learning and of teacher involvement. From the analysis, a connection between these two aspects was traced, although only related to the user profiles. VISIR is shown to be always of benefit for more motivated students, but this benefit can be maximized under particular conditions and characteristics.
Resumo:
Concepts like E-learning and M-learning are changing the traditional learning place. No longer restricted to well-defined physical places, education on Automation and other Engineering areas is entering the so-called ubiquitous learning place, where even the more practical knowledge (acquired at lab classes) is now moving into, due to emergent concepts such as Remote Experimentation or Mobile Experimentation. While Remote Experimentation is traditionally regarded as the remote access to real-world experiments through a simple web browser running on a PC connected to the Internet, Mobile Experimentation may be seen as the access to those same (or others) experiments, through mobile devices, used in M-learning contexts. These two distinct client types (PCs versus mobile devices) pose specific requirements for the remote lab infrastructure, namely the ability to tune the experiment interface according to the characteristics (e.g. display size) of the accessing device. This paper addresses those requirements, namely by proposing a new architecture for the remote lab infrastructure able to accommodate both Remote and Mobile Experimentation scenarios.
Resumo:
The aim of this thesis is to explore the relationship between imagery, technology, and remote adult Aboriginal teacher candidates through the computer software Elluminate Live. It focuses on the implications that the role imagery plays in third generation distance education with these learners and the new media associated therein. The thesis honours the Medicine Wheel teachings and is presented within this cyclical framework that reflects Indigenous philosophies and belief systems. In accordance, Sharing Circle as methodology is used to keep the research culturally grounded, and tenets of narrative inquiry further support the study. Results indicate there are strong connections to curricula enhanced with imagery—most notably a spiritual connection. Findings also reveal that identity associated to geographical location is significant, as are supportive networks. Third generation distance education, such as Elluminate Live, needs to be addressed before Aboriginal communities open the doors to all it encompasses, and although previous literature peers into various elements, this study delves into why the graphical interface resonates with members of these communities. Of utmost importance is the insight this thesis lends to the pedagogy that may possibly evoke a transformative learning process contributing to the success rate of Aboriginal learners and benefit Aboriginal communities as a whole.
Resumo:
This paper presents recent research into the functions and value of sketch outputs during computer supported collaborative design. Sketches made primarily exploiting whiteboard technology are shown to support subjects engaged in remote collaborative design, particularly when constructed in ‘nearsynchronous’ communication. The authors define near-synchronous communication and speculate that it is compatible with the reflective and iterative nature of design activity. There appears to be significant similarities between the making of sketches in near-synchronous remote collaborative design and those made on paper in more traditional face-to-face settings With the current increase in the use of computer supported collaborative working (CSCW) in undergraduate and postgraduate design education it is proposed that sketches and sketching can make important contributions to design learning in this context