113 resultados para Relics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Educação - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basement rock of the Pampean flat-slab (Sierras Pampeanas) in the Central Andes was uplifted and rotated in the Cenozoic era. The Western Sierras Pampeanas are characterised by meta-igneous rocks of Grenvillian Mesoproterozoic age and metasedimentary units metamorphosed in the Ordovician period. These rocks, known as the northern Cuyania composite terrane, were derived from Laurentia and accreted toward Western Gondwana during the Early Paleozoic. The Sierra de Umango is the westernmost range of the Western Sierras Pampeanas.This range is bounded by the Devonian sedimentary rocks of the Precordillera on the western side and Tertiary rocks from the Sierra de Maz and Sierra del Espinal on the eastern side and contains igneous and sedimentary rocks outcroppings from the Famatina System on the far eastern side. The Sierra de Umango evolved during a period of polyphase tectonic activity, including an Ordovician collisional event, a Devonian compressional deformation, Late Paleozoic and Mesozoic extensional faulting and sedimentation (Paganzo and Ischigualasto basins) and compressional deformation of the Andean foreland during the Cenozoic. A Nappe System and an important shear zone, La Puntilla-La Falda Shear Zone (PFSZ), characterise the Ordovician collisional event, which was related to the accretion of Cuyania Terrane to the proto-Andean margin of Gondwana. Three continuous deformational phases are recognised for this event: the D1 phase is distinguished by relics of 51 preserved as internal foliation within interkinematic staurolite por-phyroblasts and likely represents the progressive metamorphic stage; the D2 phase exhibits P-T conditions close to the metamorphic peak that were recorded in an 52 transposition or a mylonitic foliation and determine the main structure of Umango; and the D3 phase is described as a set of tight to recumbent folds with S3 axial plane foliation, often related to thrust faults, indicating the retrogressive metamorphic stage. The Nappe System shows a top-to-the S/SW sense direction of movement, and the PFSZ served as a right lateral ramp in the exhumation process. This structural pattern is indicative of an oblique collision, with the Cuyania Terrane subducting under the proto-Andean margin of Gondwana in the NE direction. This continental subduction and exhumation lasted at least 30 million years, nearly the entire Ordovician period, and produced metamorphic conditions of upper amphibolite-to-granulite facies in medium- to high-pressure regimes. At least two later events deformed the earlier structures: D4 and D5 deformational phases. The D4 deformational phase corresponds to upright folding, with wavelengths of approximately 10 km and a general N-S orientation. These folds modified the S2 surface in an approximately cylindrical manner and are associated with exposed, discrete shear zones in the Silurian Guandacolinos Granite. The cylindrical pattern and subhorizontal axis of the D4 folds indicates that the S2 surface was originally flat-lying. The D4 folds are responsible for preserving the basement unit Juchi Orthogneiss synformal klippen. This deformation corresponds to the Chanica Tectonic during the interval between the Devonian and Carboniferous periods. The D5 deformational phase comprehends cuspate-lobate shaped open plunging folds with E W high-angle axes (D5 folds) and sub-vertical spaced cleavage. The D5 folds and related spaced cleavage deformed the previous structures and could be associated with uplifting during the Andean Cycle. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galaxy clusters occupy a special position in the cosmic hierarchy as they are the largest bound structures in the Universe. There is now general agreement on a hierarchical picture for the formation of cosmic structures, in which galaxy clusters are supposed to form by accretion of matter and merging between smaller units. During merger events, shocks are driven by the gravity of the dark matter in the diffuse barionic component, which is heated up to the observed temperature. Radio and hard-X ray observations have discovered non-thermal components mixed with the thermal Intra Cluster Medium (ICM) and this is of great importance as it calls for a “revision” of the physics of the ICM. The bulk of present information comes from the radio observations which discovered an increasing number of Mpcsized emissions from the ICM, Radio Halos (at the cluster center) and Radio Relics (at the cluster periphery). These sources are due to synchrotron emission from ultra relativistic electrons diffusing through µG turbulent magnetic fields. Radio Halos are the most spectacular evidence of non-thermal components in the ICM and understanding the origin and evolution of these sources represents one of the most challenging goal of the theory of the ICM. Cluster mergers are the most energetic events in the Universe and a fraction of the energy dissipated during these mergers could be channelled into the amplification of the magnetic fields and into the acceleration of high energy particles via shocks and turbulence driven by these mergers. Present observations of Radio Halos (and possibly of hard X-rays) can be best interpreted in terms of the reacceleration scenario in which MHD turbulence injected during these cluster mergers re-accelerates high energy particles in the ICM. The physics involved in this scenario is very complex and model details are difficult to test, however this model clearly predicts some simple properties of Radio Halos (and resulting IC emission in the hard X-ray band) which are almost independent of the details of the adopted physics. In particular in the re-acceleration scenario MHD turbulence is injected and dissipated during cluster mergers and thus Radio Halos (and also the resulting hard X-ray IC emission) should be transient phenomena (with a typical lifetime <» 1 Gyr) associated with dynamically disturbed clusters. The physics of the re-acceleration scenario should produce an unavoidable cut-off in the spectrum of the re-accelerated electrons, which is due to the balance between turbulent acceleration and radiative losses. The energy at which this cut-off occurs, and thus the maximum frequency at which synchrotron radiation is produced, depends essentially on the efficiency of the acceleration mechanism so that observations at high frequencies are expected to catch only the most efficient phenomena while, in principle, low frequency radio surveys may found these phenomena much common in the Universe. These basic properties should leave an important imprint in the statistical properties of Radio Halos (and of non-thermal phenomena in general) which, however, have not been addressed yet by present modellings. The main focus of this PhD thesis is to calculate, for the first time, the expected statistics of Radio Halos in the context of the re-acceleration scenario. In particular, we shall address the following main questions: • Is it possible to model “self-consistently” the evolution of these sources together with that of the parent clusters? • How the occurrence of Radio Halos is expected to change with cluster mass and to evolve with redshift? How the efficiency to catch Radio Halos in galaxy clusters changes with the observing radio frequency? • How many Radio Halos are expected to form in the Universe? At which redshift is expected the bulk of these sources? • Is it possible to reproduce in the re-acceleration scenario the observed occurrence and number of Radio Halos in the Universe and the observed correlations between thermal and non-thermal properties of galaxy clusters? • Is it possible to constrain the magnetic field intensity and profile in galaxy clusters and the energetic of turbulence in the ICM from the comparison between model expectations and observations? Several astrophysical ingredients are necessary to model the evolution and statistical properties of Radio Halos in the context of re-acceleration model and to address the points given above. For these reason we deserve some space in this PhD thesis to review the important aspects of the physics of the ICM which are of interest to catch our goals. In Chapt. 1 we discuss the physics of galaxy clusters, and in particular, the clusters formation process; in Chapt. 2 we review the main observational properties of non-thermal components in the ICM; and in Chapt. 3 we focus on the physics of magnetic field and of particle acceleration in galaxy clusters. As a relevant application, the theory of Alfv´enic particle acceleration is applied in Chapt. 4 where we report the most important results from calculations we have done in the framework of the re-acceleration scenario. In this Chapter we show that a fraction of the energy of fluid turbulence driven in the ICM by the cluster mergers can be channelled into the injection of Alfv´en waves at small scales and that these waves can efficiently re-accelerate particles and trigger Radio Halos and hard X-ray emission. The main part of this PhD work, the calculation of the statistical properties of Radio Halos and non-thermal phenomena as expected in the context of the re-acceleration model and their comparison with observations, is presented in Chapts.5, 6, 7 and 8. In Chapt.5 we present a first approach to semi-analytical calculations of statistical properties of giant Radio Halos. The main goal of this Chapter is to model cluster formation, the injection of turbulence in the ICM and the resulting particle acceleration process. We adopt the semi–analytic extended Press & Schechter (PS) theory to follow the formation of a large synthetic population of galaxy clusters and assume that during a merger a fraction of the PdV work done by the infalling subclusters in passing through the most massive one is injected in the form of magnetosonic waves. Then the processes of stochastic acceleration of the relativistic electrons by these waves and the properties of the ensuing synchrotron (Radio Halos) and inverse Compton (IC, hard X-ray) emission of merging clusters are computed under the assumption of a constant rms average magnetic field strength in emitting volume. The main finding of these calculations is that giant Radio Halos are naturally expected only in the more massive clusters, and that the expected fraction of clusters with Radio Halos is consistent with the observed one. In Chapt. 6 we extend the previous calculations by including a scaling of the magnetic field strength with cluster mass. The inclusion of this scaling allows us to derive the expected correlations between the synchrotron radio power of Radio Halos and the X-ray properties (T, LX) and mass of the hosting clusters. For the first time, we show that these correlations, calculated in the context of the re-acceleration model, are consistent with the observed ones for typical µG strengths of the average B intensity in massive clusters. The calculations presented in this Chapter allow us to derive the evolution of the probability to form Radio Halos as a function of the cluster mass and redshift. The most relevant finding presented in this Chapter is that the luminosity functions of giant Radio Halos at 1.4 GHz are expected to peak around a radio power » 1024 W/Hz and to flatten (or cut-off) at lower radio powers because of the decrease of the electron re-acceleration efficiency in smaller galaxy clusters. In Chapt. 6 we also derive the expected number counts of Radio Halos and compare them with available observations: we claim that » 100 Radio Halos in the Universe can be observed at 1.4 GHz with deep surveys, while more than 1000 Radio Halos are expected to be discovered in the next future by LOFAR at 150 MHz. This is the first (and so far unique) model expectation for the number counts of Radio Halos at lower frequency and allows to design future radio surveys. Based on the results of Chapt. 6, in Chapt.7 we present a work in progress on a “revision” of the occurrence of Radio Halos. We combine past results from the NVSS radio survey (z » 0.05 − 0.2) with our ongoing GMRT Radio Halos Pointed Observations of 50 X-ray luminous galaxy clusters (at z » 0.2−0.4) and discuss the possibility to test our model expectations with the number counts of Radio Halos at z » 0.05 − 0.4. The most relevant limitation in the calculations presented in Chapt. 5 and 6 is the assumption of an “averaged” size of Radio Halos independently of their radio luminosity and of the mass of the parent clusters. This assumption cannot be released in the context of the PS formalism used to describe the formation process of clusters, while a more detailed analysis of the physics of cluster mergers and of the injection process of turbulence in the ICM would require an approach based on numerical (possible MHD) simulations of a very large volume of the Universe which is however well beyond the aim of this PhD thesis. On the other hand, in Chapt.8 we report our discovery of novel correlations between the size (RH) of Radio Halos and their radio power and between RH and the cluster mass within the Radio Halo region, MH. In particular this last “geometrical” MH − RH correlation allows us to “observationally” overcome the limitation of the “average” size of Radio Halos. Thus in this Chapter, by making use of this “geometrical” correlation and of a simplified form of the re-acceleration model based on the results of Chapt. 5 and 6 we are able to discuss expected correlations between the synchrotron power and the thermal cluster quantities relative to the radio emitting region. This is a new powerful tool of investigation and we show that all the observed correlations (PR − RH, PR − MH, PR − T, PR − LX, . . . ) now become well understood in the context of the re-acceleration model. In addition, we find that observationally the size of Radio Halos scales non-linearly with the virial radius of the parent cluster, and this immediately means that the fraction of the cluster volume which is radio emitting increases with cluster mass and thus that the non-thermal component in clusters is not self-similar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present thesis a thourough multiwavelength analysis of a number of galaxy clusters known to be experiencing a merger event is presented. The bulk of the thesis consists in the analysis of deep radio observations of six merging clusters, which host extended radio emission on the cluster scale. A composite optical and X–ray analysis is performed in order to obtain a detailed and comprehensive picture of the cluster dynamics and possibly derive hints about the properties of the ongoing merger, such as the involved mass ratio, geometry and time scale. The combination of the high quality radio, optical and X–ray data allows us to investigate the implications of the ongoing merger for the cluster radio properties, focusing on the phenomenon of cluster scale diffuse radio sources, known as radio halos and relics. A total number of six merging clusters was selected for the present study: A3562, A697, A209, A521, RXCJ 1314.4–2515 and RXCJ 2003.5–2323. All of them were known, or suspected, to possess extended radio emission on the cluster scale, in the form of a radio halo and/or a relic. High sensitivity radio observations were carried out for all clusters using the Giant Metrewave Radio Telescope (GMRT) at low frequency (i.e. ≤ 610 MHz), in order to test the presence of a diffuse radio source and/or analyse in detail the properties of the hosted extended radio emission. For three clusters, the GMRT information was combined with higher frequency data from Very Large Array (VLA) observations. A re–analysis of the optical and X–ray data available in the public archives was carried out for all sources. Propriety deep XMM–Newton and Chandra observations were used to investigate the merger dynamics in A3562. Thanks to our multiwavelength analysis, we were able to confirm the existence of a radio halo and/or a relic in all clusters, and to connect their properties and origin to the reconstructed merging scenario for most of the investigated cases. • The existence of a small size and low power radio halo in A3562 was successfully explained in the theoretical framework of the particle re–acceleration model for the origin of radio halos, which invokes the re–acceleration of pre–existing relativistic electrons in the intracluster medium by merger–driven turbulence. • A giant radio halo was found in the massive galaxy cluster A209, which has likely undergone a past major merger and is currently experiencing a new merging process in a direction roughly orthogonal to the old merger axis. A giant radio halo was also detected in A697, whose optical and X–ray properties may be suggestive of a strong merger event along the line of sight. Given the cluster mass and the kind of merger, the existence of a giant radio halo in both clusters is expected in the framework of the re–acceleration scenario. • A radio relic was detected at the outskirts of A521, a highly dynamically disturbed cluster which is accreting a number of small mass concentrations. A possible explanation for its origin requires the presence of a merger–driven shock front at the location of the source. The spectral properties of the relic may support such interpretation and require a Mach number M < ∼ 3 for the shock. • The galaxy cluster RXCJ 1314.4–2515 is exceptional and unique in hosting two peripheral relic sources, extending on the Mpc scale, and a central small size radio halo. The existence of these sources requires the presence of an ongoing energetic merger. Our combined optical and X–ray investigation suggests that a strong merging process between two or more massive subclumps may be ongoing in this cluster. Thanks to forthcoming optical and X–ray observations, we will reconstruct in detail the merger dynamics and derive its energetics, to be related to the energy necessary for the particle re–acceleration in this cluster. • Finally, RXCJ 2003.5–2323 was found to possess a giant radio halo. This source is among the largest, most powerful and most distant (z=0.317) halos imaged so far. Unlike other radio halos, it shows a very peculiar morphology with bright clumps and filaments of emission, whose origin might be related to the relatively high redshift of the hosting cluster. Although very little optical and X–ray information is available about the cluster dynamical stage, the results of our optical analysis suggest the presence of two massive substructures which may be interacting with the cluster. Forthcoming observations in the optical and X–ray bands will allow us to confirm the expected high merging activity in this cluster. Throughout the present thesis a cosmology with H0 = 70 km s−1 Mpc−1, m=0.3 and =0.7 is assumed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present thesis, the geochemistry, petrology and geochronology of ophiolite complexes from central northern Greece were studied in detail in order to gain insights on the petrogenetic pathways and geodynamic processes that lead to their formation and evolution. The major- and trace-element content of minerals and whole rocks from all four ophiolite complexes was determined using high-precision analytical equipment. These results were then coupled with Nd and Sr isotopic measurements. In order to precisely place the evolution of these ophiolites in time, U-Pb geochronology on zircons was conducted using a SHRIMP-II. The data obtained suggest that the ophiolites studied invariably show typical characteristics of subduction-zone magmatism (e.g. negative Nb anomalies, Th enrichment). In N-MORB-normalised multielement profiles the high field-strength elements display patterns that vary from depleted to N-MORB-like. Chondrite-normalised rare-earth element (REE) profiles show flat heavy-REE patterns suggesting a shallow regime of source melting for all the ophiolites, well within the stability field of spinel lherzolite. The majority of the samples have light-REE depleted patterns. 87Sr/86Sr isotopic ratios range from 0.703184 to 0.715853 and are in cases influenced by alteration. The εNd values are positive (the majority of the mafic samples is typically 7.1-3.1) but lower than N-MORB and depleted mantle. With the exception of the Thessaloniki ophiolite that has uniform island-arc tholeiitic chemical characteristics, the rest of the ophiolites show dual chemistry consisting of rocks with minor subduction-zone characteristics that resemble chemically back-arc basin basalts (BABB) and rocks with more pronounced subduction-zone characteristics. Tectonomagmatic discrimination schemes classify the samples as island-arc tholeiites and back-arc basin basalts or N-MORB. Melting modelling carried out to evaluate source properties and degree of melting verifies the dual nature of the ophiolites. The samples that resemble back-arc basin basalts require very small degrees of melting (<10%) of fertile sources, whereas the rest of the samples require higher degrees (25-15%) of melting. As deduced from the present geochemical and petrological investigation, the ophiolites from Guevguely, Oraeokastro, Thessaloniki, and Chalkidiki represent relics of supra-subduction zone crust that formed in succeeding stages of island-arc rifting and back-arc spreading as well as in a fore arc setting. The geochronological results have provided precise determination of the timing of formation of these complexes. The age of the Guevguely ophiolite has been determined as 167±1.2 Ma, that of Thessaloniki as 169±1.4 Ma, that of Kassandra as 167±2.2 Ma and that of Sithonia as 160±1.2 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gli scavi effettuati a Classe, a sud di Ravenna, presso i siti archeologici dell'area portuale e della Basilica di San Severo, hanno portato alla luce un numero abbondante di moneta, 2564 dall'area portuale e 224 dalla basilica, un totale di 2788 reperti monetali, di cui solo 863 sono leggibili e databili. La datazione dei materiali dell’area portuale, fondata agli inizi del V secolo, parte dal II secolo a.C. fino all’VIII secolo d.C.. La maggior parte dei reperti è relativa al periodo tra il IV e il VII secolo, il momento di massima importanza del porto commerciale, con testimonianza di scambi con altri porti del bacino mediterraneo, in particolare con l’Africa del Nord e il Vicino Oriente. La documentazione proveniente dalla Basilica di San Severo, fondata alla fine del VI secolo per la custodia delle reliquie del santo, mostra un trend diverso dal precedente, con monetazione che copre un arco cronologico dal I secolo a.C. fino al XIV secolo d.C.. La continuità dell’insediamento è dimostrato dall’evidenza numismatica, seppur scarsa, fino alla costruzione del monastero a sud della basilica, l’area dalla quale provengono la maggior parte delle monete. I quantitativi importanti di monetazione tardoantica, ostrogota e bizantina, in particolare di tipi specifici come il Felix Ravenna, ipoteticamente coniato a Roma, oppure il ½ e il 1/4 di follis di produzione saloniana emesso da Giustiniano I, hanno concesso uno studio dettagliato per quello che riguarda il peso, le dimensioni e lo stile di produzione di queste emissioni. Questi dati e la loro distribuizione sul territorio ha suggerito nuove ipotesi per quello che riguarda la produzione di questi due tipi presso la zecca di Ravenna. Un altro dato importante è il rinvenimento di emissioni di Costantino VIII, alcune rare e altre sconosciute, rinvenute solo nel territorio limitrofo a Classe e Ravenna.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Variscan basement of Northern Apennines (Northern Italy) is a polymetamorphic portion of continental crust. This thesis investigated the metamorphic history of this basement occurring in the Cerreto Pass, in the Pontremoli well, and in the Pisani Mountains. The study comprised fieldwork, petrography and microstructural analysis, determination of the bulk rock and mineral composition, thermodynamic modelling, conventional geothermobarometry, monazite chemical dating and Ar/Ar dating of muscovite. The reconstructed metamorphic evolution of the selected samples allowed to define a long-lasting metamorphic history straddling the Variscan and Alpine orogenesis. Some general petrological issues generally found in low- to medium-grade metapelites were also tackled: (i) With middle-grade micaschist it is possible to reconstruct a complete P-T-D path by combining microstructural analysis and thermodynamic modelling. Prekinematic white mica may preserve Mg-rich cores related to the pre-peak stage. Mn-poor garnet rim records the peak metamorphism. Na-rich mylonitic white mica, the XFe of chlorite and the late paragenesis may constrain the retrograde stage. (ii) Metapelites may contain coronitic microstructures of apatite + Th-silicate, allanite and epidote around unstable monazite grains. Chemistry and microstructure of Th-rich monazite relics surrounded by this coronitic microstructure may suggest that monazite mineral was inherited and underwent partial dissolution and fluid-aided replacement by REE-accessory minerals at 500-600°C and 5-7 kbar. (iii) Fish-shaped white mica is not always a (prekinematic) mica-fish. Observed at high-magnification BSE images it may consist of several white mica formed during a mylonitic stage. Hence, the asymmetric foliation boudin is a suitable microstructure to obtain geochronological information about the shearing stage. (iv) Thermodynamic modelling of a hematite-rich metasedimentary rock fails to reproduce the observed mineral compositions when the bulk Fe2O3 is neglected or determined through titration. The mismatch between observed and computed mineral compositions and assemblage is resolved by tuning the effective ferric iron content by P-XFe2O3 diagrams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Capuchins of the Rhaetic Missions had to deal with local forms of catholic piety, which for them were almost as exotic as the religious practices of non-Christian communities in Asia or America. Therefore they regarded it as their task to propagate the true faith among the “schismatic” Catholics from the Grisons. For this purpose, the Capuchins developed a particular pattern of interpretation: They created a sacred territory in which the divine grace can be experienced by the faithful. Hence the missionaries built new churches and chapels, decorated the old ones in baroque style and brought numerous of holy relics from Italy. Thus, they enforced the sacralisation of the alpine space. Recent developments in cultural studies and social sciences make it possible to capture such processes of spacing more precisely. In the course of the “spatial turn”, space is no longer conceived as a physical entity but now is regarded as a human construct. The paper discusses possibilities and limitations of “space” as an analytical category for the study of mission within Catholicism. The sociological concept of space developed by Martina Löw (2001) is used as starting point. This allows the simultaneous consideration of social interactions and cultural contexts in construction of “sacred space”.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spectrum characteristic of the EMC ranges from eclogites (containing omphacite and/or jadeite, garnet, phengite, glaucophane, zoisite, chloritoid, rutile) to phengite schists, calcschists, and marbles, as well as a variety of orthogneisses. Despite the intense polyphase deformation and HP-metamorphic recrystallization, it is possible in some locations to recognize pre-Alpine characteristics in some of the protoliths. For instance, two types of felsic orthogneiss can be distinguished in the Aosta Valley, one derived from Permian granitoids (with local preservation of intrusive contacts, magmatic inclusions, leucocratic veins and other magmatic structures; Stop 3), the other derived from pre-Variscan leuco-monzogranite, such as the building stone mined at the “Argentera” quarry near Settimo Vittone / Montestrutto (Stop 2; so-called “Verde Argento” contains jadeite, phengite, K-feldspar, quartz). Polycyclic and more rarely monocyclic metasediments contain evidence of a complex Alpine PTDt-evolution, locally including relics of their prograde history from blueschist, one or more stages at eclogite facies. Recent petrochronological studies have dated this HP-evolution of the Sesia Zone in some detail. In the area visited, clear evidence of HP-cycling has been identified in one km-size tectonic slice (Stop 1), but not in adjacent parts of the EMC, indicating “yo-yo tectonics”. Partial retrogression and attendant ductile to brittle deformation of the HP-rocks is evident in one of the outcrops (Stop 4). Apart from the four localities in the Sesia Zone, a final outcrop introduces HP-rocks of the adjacent Piemonte oceanic unit, specifically calc-schists and ophiolite members of the “Zermatt-Saas” zone. The hilltop outcrop (Stop 5) displays foliated antigorite schist with peridotite relics (clinopyroxene, spinel) containing lenses derived from doleritic dykes. These fine-grained metarodingites and the folded veins containing Mg-chlorite and titanoclinohumite within serpentinite once again indicate equilibration under low-temperature eclogite facies conditions. However, these units reached that HP stage more than 20 Ma after the youngest eclogite facies imprint recognized in the Sesia Zone. Despite nearly half a century of intense study in the Sesia Zone, the complex assembly of its HP-terranes and their relation to more external parts of the Western Alps remains incompletely understood. This field guide merely introduces a few of the classic outcrops and discusses some of the critical evidence they contain, but it could not incorporate details on each stage of the evolution recognized so far.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiites (IAT) signature in the upper units of fine-grained amphibolites and amphibole rich-amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An example of cordierite-bearing gneiss that is part of a high-grade gneiss-migmatite sequence is described from the Hatch Plain in the Read Mountains of the Shackleton Range, Antarctica, for the first time. The cordierite-bearing rocks constitute the more melanosomic portions of the metatectic and migmatitic rocks that are associated with relict granulite facies rocks such as enderbitic granulite and enderbitic garnet granulite. The predominant mineral assemblage in the cordierite-bearing rocks is chemically homogeneous cordierite (XMg 0.61) and biotite (XMg 0.47), strongly zoned garnet (XMg 0.18-0.11), sillimanite, K-feldspar (Or81-94Ab5-18An0.6), plagioclase (An28), and quartz. Inclusions of sillimanite and biotite relics in both garnet and cordierite indicate that garnet and cordierite were produced by the coupled, discontinuous reaction biotite + sillimanite + quartz = cordierite + garnet + K-feldspar + H2O. Various garnet-biotite and garnet-cordierite geothermometers and sillimanite-quartz-plagioclase-garnet-cordierite geobarometers yield a continuous clockwise path in the P-T diagram. The P-T conditions for equilibrium between garnet core and cordierite and between garnet core and biotite during peak metamorphism and migmatization were estimated to be 690 °C at 5-6 kb. This was followed by cooling and unloading with continuously changing conditions down to 515 °C at 2-3 kb. This low-pressure re-equilibration correlates with the pressure conditions evaluated by SCHULZE (1989) for the widespread granitic gneisses of the Read Group in the Shackleton Range. The associated relict enderbitic granulites representing low-pressure type granulite (8 kb; 790 °C) are comparable to similar low-pressure granulites from the East Antarctic craton. They were either formed by under-accretion processes after collision (WELLS 1979, p. 217) or they are a product of remetamorphism at P-T conditions intermediate between granulite and amphibolite facies. A model of a multiple imbrication zone with crustal thickening (CUTHBERT et al. 1983) is discussed for the formation of the relict granulites of the central and eastern Read Mountains which show higher pressure conditions (8-12 kb, SCHULZE & OLESCH 1990), indicating a Proterozoic crustal thickness of at least 40 km.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-pressure/low-temperature metabasites occupy a definite geological position within the structure of the Polar Urals and have a very important bearing on the understanding of the early history of the Ural Mountains. Recently obtained geological, petrographic, geochemical and isotope data allow some conclusions on this history. The metabasites of the Khord"yus and Dzela complexes contain relics of a Neoproterozoic (578 ±8 Ma) oceanic crust. This crust formed part of the base of the early Paleozoic (500 Ma) ensimatic island arc and experienced Ca-Al-Si±Na metasomatism and, probably, partial melting with the formation of boninite melts. However, so far no boninite volcanics have been found. The metabasites at the base of the island arc took part in the collision and as a consequence experienced glaucophane schist and greenschist facies metamorphism during the collision and obduction over the passive Baltic margin 350 ±11 Ma ago.