998 resultados para Relativistic astrophysics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although ab initio calculations of relativistic Brueckner theory lead to large scalar isovector fields in nuclear matter, at present, successful versions of covariant density functional theory neglect the interactions in this channel. A new high-precision density functional DD-MEδ is presented which includes four mesons, σ, ω, δ, and ρ, with density-dependent meson-nucleon couplings. It is based to a large extent on microscopic ab initiocalculations in nuclear matter. Only four of its parameters are determined by adjusting to binding energies and charge radii of finite nuclei. The other parameters, in particular the density dependence of the meson-nucleon vertices, are adjusted to nonrelativistic and relativistic Brueckner calculations of symmetric and asymmetric nuclear matter. The isovector effective mass mp*−mn* derived from relativistic Brueckner theory is used to determine the coupling strength of the δ meson and its density dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study whether the neutron skin thickness Δrnp of 208Pb originates from the bulk or from the surface of the nucleon density distributions, according to the mean-field models of nuclear structure, and find that it depends on the stiffness of the nuclear symmetry energy. The bulk contribution to Δrnp arises from an extended sharp radius of neutrons, whereas the surface contribution arises from different widths of the neutron and proton surfaces. Nuclear models where the symmetry energy is stiff, as typical of relativistic models, predict a bulk contribution in Δrnp of 208Pb about twice as large as the surface contribution. In contrast, models with a soft symmetry energy like common nonrelativistic models predict that Δrnp of 208Pb is divided similarly into bulk and surface parts. Indeed, if the symmetry energy is supersoft, the surface contribution becomes dominant. We note that the linear correlation of Δrnp of 208Pb with the density derivative of the nuclear symmetry energy arises from the bulk part of Δrnp. We also note that most models predict a mixed-type (between halo and skin) neutron distribution for 208Pb. Although the halo-type limit is actually found in the models with a supersoft symmetry energy, the skin-type limit is not supported by any mean-field model. Finally, we compute parity-violating electron scattering in the conditions of the 208Pb parity radius experiment (PREX) and obtain a pocket formula for the parity-violating asymmetry in terms of the parameters that characterize the shape of the 208Pb nucleon densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the influence of the density dependence of the symmetry energy on the average excitation energy of the isoscalar giant monopole resonance (GMR) in stable and exotic neutron-rich nuclei by applying the relativistic extended Thomas-Fermi method in scaling and constrained calculations. For the effective nuclear interaction, we employ the relativistic mean field model supplemented by an isoscalar-isovector meson coupling that allows one to modify the density dependence of the symmetry energy without compromising the success of the model for binding energies and charge radii. The semiclassical estimates of the average energy of the GMR are known to be in good agreement with the results obtained in full RPA calculations. The present analysis is performed along the Pb and Zr isotopic chains. In the scaling calculations, the excitation energy is larger when the symmetry energy is softer. The same happens in the constrained calculations for nuclei with small and moderate neutron excess. However, for nuclei of large isospin the constrained excitation energy becomes smaller in models having a soft symmetry energy. This effect is mainly due to the presence of loosely-bound outer neutrons in these isotopes. A sharp increase of the estimated width of the resonance is found in largely neutron-rich isotopes, even for heavy nuclei, which is enhanced when the symmetry energy of the model is soft. The results indicate that at large neutron numbers the structure of the low-energy region of the GMR strength distribution changes considerably with the density dependence of the nuclear symmetry energy, which may be worthy of further characterization in RPA calculations of the response function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive analytical expressions for the excitation energy of the isoscalar giant monopole and quadrupole resonances in finite nuclei, by using the scaling method and the extended ThomasFermi approach to relativistic mean-field theory. We study the ability of several nonlinear σω parameter sets of common use in reproducing the experimental data. For monopole oscillations the calculations agree better with experiment when the nuclear matter incompressibility of the relativistic interaction lies in the range 220260 MeV. The breathing-mode energies of the scaling method compare satisfactorily with those obtained in relativistic RPA and time-dependent mean-field calculations. For quadrupole oscillations, all the analyzed nonlinear parameter sets reproduce the empirical trends reasonably well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the scaling method we derive the virial theorem for the relativistic mean field model of nuclei treated in the ThomasFermi approach. The ThomasFermi solutions statisfy the stability condition against scaling. We apply the formalism to study the excitation energy of the breathing mode in finite nuclei with several relativistic parameter sets of common use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through an imaginary change of coordinates in the Galilei algebra in 4 space dimensions and making use of an original idea of Dirac and Lvy-Leblond, we are able to obtain the relativistic equations of Dirac and of Bargmann and Wigner starting with the (Galilean-invariant) Schrdinger equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a Hamiltonian formulation for the three-dimensional formalism of predictive relativistic mechanics. This Hamiltonian structure is used to derive a set of dynamical equations describing the interaction among systems in perturbation theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explicitly construct a closed system of differential equations describing the electromagnetic and gravitational interactions among bodies to first order in the coupling constants, retaining terms up to order c-2. The Breit and Barker and O'Connell Hamiltonians are recovered by means of a coordinate transformation. The method used throws light on the meaning of these coordinates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compute up to and including all the c-2 terms in the dynamical equations for extended bodies interacting through electromagnetic, gravitational, or short-range fields. We show that these equations can be reduced to those of point particles with intrinsic angular momentum assuming spherical symmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a definition of classical differential cross sections for particles with essentially nonplanar orbits, such as spinning ones. We give also a method for its computation. The calculations are carried out explicitly for electromagnetic, gravitational, and short-range scalar interactions up to the linear terms in the slow-motion approximation. The contribution of the spin-spin terms is found to be at best 10-6 times the post-Newtonian ones for the gravitational interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the electric dipole polarizability α D in 208 Pb based on the predictions of a large and representative set of relativistic and nonrelativistic nuclear mean-field models. We adopt the droplet model as a guide to better understand the correlations between α D and other isovector observables. Insights from the droplet model suggest that the product of α D and the nuclear symmetry energy at saturation density J is much better correlated with the neutron skin thickness r np of 208 Pb than the polarizability alone. Correlations of α D J with r np and with the symmetry energy slope parameter L suggest that α D J is a strong isovector indicator. Hence, we explore the possibility of constraining the isovector sector of the nuclear energy density functional by comparing our theoretical predictions against measurements of both α D and the parity-violating asymmetry in 208 Pb. We find that the recent experimental determination of α D in 208 Pb in combination with the range for the symmetry energy at saturation density J = [31 ± (2) est] MeV suggests r np (208 Pb) = 0 . 165 ± (0 . 009) expt ± (0 . 013) theor ± (0.021) est fm and L = 43 ± (6) expt ± (8) theor ± (12) est MeV

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV γ-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich data set of radio, hard and soft X-ray, and γ-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a ~3 day softening and recovery of the X-ray emission, followed almost immediately by a ~1 Jy radio flare at 15 GHz, followed by a 4.3σ γ-ray flare (E > 100 MeV) ~1.5 days later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the γ-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the γ-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for γ-ray emission from Cyg X-3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reconsider a model of two relativistic particles interacting via a multiplicative potential, as an example of a simple dynamical system with sectors, or branches, with different dynamics and degrees of freedom. The presence or absence of sectors depends on the values of rest masses. Some aspects of the canonical quantization are described. The model could be interpreted as a bigravity model in one dimension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme inter-actions and from relativistic mean field theory. VWK consist s of the Thomas-Fermi part plus a pure, perturbative h 2 correction. In external potentials, VWK passes through the average of the quantal values of the accumulated level density and total en energy as a function of the Fermi energy. However, there is a problem of overbinding when the energy per particle is displayed as a function of the particle number. The situation is analyzed comparing spherical and deformed harmonic oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding energies are very close to those obtained from extended Thomas-Fermi functionals of h 4 order, pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not cure the overbinding problem, i.e., the semiclassical energies show more binding than they should. This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field approach. However, even in the latter case the shell correction energy for e.g.208 Pb turns out to be only ∼ −6 MeV what is about a factor two or three off the generally accepted value. As an adhoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable throughout the periodic table. The general importance of the present studies for other finite Fermi systems, self-bound or in external potentials, is pointed out.