978 resultados para Relative growth


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Data on the growth curve of the lichen Rhizocarpon geographicum were obtained by measuring the radial growth rates (mm per 1.5 years) of 39 thalli from 2 to 65 mm in diameter growing in the same environment. An Aplin and Hill plot (r2 – r1 against ln r2 – ln r1) of the data and regression analyses suggested an initial phase of growth (up to a diameter of about 7 mm) in which the relative growth rate increased rapidly. This was followed by a phase in which the relative growth rate fell but the radial growth rate continued to rise (7 to 20 mm in diameter). Radial growth was then relatively constant until about 45 mm diameter and then declined. The Aplin and Hill model did not fit the data as a whole but may apply for a transient period in thalli between about 7 and 16 mm in diameter. The curve shows some similarities to that suggested by lichenometric studies but differs in showing a less steep decline in growth rate after the ‘great’ period.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The growth rates of thalli of foliose saxicolous lichens before and after the linear phase of growth were measured in 1973. Changes in the radial growth rate (measured as mm/year) with thallus size in the prelinear phase (thalli less than approximately 1.5 cm in diameter) were consistent with the hypothesis that early growth of these lichens is loagarithmic. When growth in the prelinear phase was measured as a relative growth rate (measured as sq cm/sq cm/year) there was a rapid rise in growth rate until about 3 mm thallus diameter and then a decline in growth rate. The radial growth rate of non-fragmenting thalli when compared with fragmenting thalli at different stages of fragmentation suggested that radial growth rate does not significantly decline after fragmentation of the thallus. This result is not consistent with a postlinear phase in the radial growth of a lichen thallus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The majority of studies of the effects of environmental factors on lichen growth have been carried out in the field. Growth of lichens in the field has been measured as absolute growth rate (e.g., length growth, radial growth, diameter growth, area growth, or dry weight gain per unit of time) or as a relative growth rate, expressed per unit of thallus area or weight, e.g., thallus specific weight. Seasonal fluctuations in growth in the field often correlate best with changes in average or total rainfall or frequency of rain events through the year. In some regions of the world, temperature is also an important climatic factor influencing growth. Interactions between microclimatic factors such as light intensity, temperature, and moisture are particularly important in determining local differences in growth especially in relation to aspect and slope of rock surface, or height on a tree. Factors associated with the substratum including type, chemistry, texture, and porosity can all influence growth. In addition, growth can be influenced by the degree of nutrient enrichment of the substratum associated with bird droppings, nitrogen, phosphate, salinity, or pollution. Effects of environmental factors on growth can act directly to restrict species distribution or indirectly by altering the competitive balance among different species in a community.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Schinus terebinthifolius Raddi (Schinus) is an invasive exotic species widely found in disturbed and native communities of Florida. This species has been shown to displace native species as well as alter community structure and function. The purpose of this study was to determine if the growth and gas exchange patterns of Schinus, under differing salinity conditions, were different from native species. Two native upland glycophytic species (Rapanea punctata and Randia aculeata) and two native mangrove species (Rhizophora mangle and Laguncularia racemosa) were compared with the exotic. Overall, the exotics morphologic changes and gas exchange patterns were most similar to R. mangle. Across treatments, increasing salinity decreased relative growth rate (RGR), leaf area ratio (LAR) and specific leaf area (SLA) but did not affect root/shoot ratios (R:S). Allocation patterns were however significantly different among species. The largest proportion of Schinus biomass was allocated to stems (47%), resulting in plants that were generally taller than the other species. Schinus also had the highest SLA and largest total leaf area of all species. This meant that the exotic, which was taller and had thinner leaves, was potentially able to maintain photosynthetic area comparable to native species. Schinus response patterns show that this exotic exhibits some physiological tolerance for saline conditions. Coupled with its biomass allocation patterns (more stem biomass and large area of thin leaves), the growth traits of this exotic potentially provide this species an advantage over native plants in terms of light acquisition in a brackish forested ecosystem.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study examined whether high nutrient concentrations associated with leaf-cutting ant nests influence plant growth and plant water relations in Amazon rain forests. Three nests of Atta cephalotes were selected along with 31 Amaioua guianensis and Protium sp. trees that were grouped into trees near and distant (>10 m) from nests. A 15N leaf-labelling experiment confirmed that trees located near nests accessed nutrients from nests. Trees near nests exhibited higher relative growth rates (based on stem diameter increases) on average compared with trees further away; however this was significant for A. guianensis (near nest 0.224 y−1 and far from nest 0.036 y−1) but not so for Protium sp. (0.146 y−1 and 0.114 y−1 respectively). Water relations were similarly species-specific; for A. guianensis, near-nest individuals showed significantly higher sap flow rates (16 vs. 5 cm h−1), higher predawn/midday water potentials (−0.66 vs. −0.98 MPa) and lower foliar δ13C than trees further away indicating greater water uptake in proximity to the nests while the Protium sp. showed no significant difference except for carbon isotopes. This study thus shows that plant response to high nutrient concentrations in an oligotrophic ecosystem varies with species. Lower seedling abundance and species richness on nests as compared with further away suggests that while adult plants access subterranean nutrient pools, the nest surfaces themselves do not encourage plant establishment and growth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Investigations on growth and quantity of phycocolloids of Sargassum sp. and Gracilaria corticata was done on field and laboratorial works over one year from January 2003 to May 2004. Sargassum thalli began growth from January. The highest biomass value recorded 1611.04 gm^-2 was obtained in November. The receptacles appeared on November and released eggs. The senescence of Sargassum thalli was in December and the new thallus began to grow from January, The highest relative growth rate (6.74 percent) was in February. The relative growth rate showed significant correlation (p<0,05) with temperature. The highest value of alginate was in November (10.02 percent). Alginat content showed significant correlations (p<0.05) with Sargassum biomass. There was no significant effect of environmental factors on alginate content. The highest biomass of Graciiaria was in Match (49.88 gm^-2). Maximum relative growth rate of Gracilara (2 percent) was in December. Relative growth rate of Gracilaria (2.8 percent) was in December. Relative growth rate of Gracilaria showed significant correlations (p<0.05) with temperature. There was significant effect of ammonium (p<0.05) on growth factors of Gracilaria, maximum agar content was in August {10.005 percent). The yield of agar showed significant correlation (p<0.05) with Gracilaria biomass and ammonium in field and laboratory.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cat’s claw creeper vine, Dolichandra unguis-cati (L.) Lohmann (syn. Macfadyena unguis-cati (L.) Gentry) (Bignoniaceae), is a major environmental weed in Australia. Two distinct forms of this weed (‘long’ and ‘short’ pod), with differences in leaf morphology and fruit size, occur in Australia. The long pod form has only been reported in less than fifteen localities in the whole of south-east Queensland, while the short pod form is widely distributed in Queensland and New South Wales. This study sought to compare growth traits such as specific leaf area, relative growth rate, stem length, shoot/root ratio, tuber biomass and branching architecture between these forms. These traits were monitored under glasshouse conditions over a period of 18 months. Short pod exhibited higher values of relative growth rates, stem length, number of tubers and specific leaf area than long pod, but only after 10 months of plant growth. Prior to this, long and short pod did not differ significantly. Higher values for these traits have been described as characteristics of successful colonizers. Results from this study could partly explain why the short pod form is more widely distributed in Australia while long pod is confined to a few localities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the Anomura, studies on growth patterns are infrequent, possibly because the heterogeneity of the group, especially in terms of morphology, makes it difficult to construct generalized growth models. Particularly hermit crabs are an interesting group to evaluate aspects of growth, because of their unique body. Isocheles sawayai, a hermit crab found only in the western Atlantic Ocean, poorly known with respect to its sexual dimorphism and maturity, was investigated here based on morphometry. Monthly collections (July 2001 through June 2003) were made from a shrimp fishing boat in the Caraguatatuba region on the northern coast of the state of SA o pound Paulo, Brazil. The specimens were measured and weighed, and had their sex checked. Throughout the sampling period, 374 specimens of I. sawayai were collected (11.23% nonovigerous females, 6.69% ovigerous females, 79.41% males and 2.67% intersexes). The size at which morphological sexual maturity was reached by both sexes ranged from 4.0 to 4.3 mm shield length, according to the relative growth and the size of the smallest ovigerous female. Sexual dimorphism was shown by males, which were significantly larger than females, and by differences in growth pattern between the sexes, especially for relationships that involved the pleopods, which is related to their different functions in males and females. The present study is one of the first to use pleopod morphometry to determine sexual maturity and dimorphism in hermit crabs, especially for species with intersexuality such as I. sawayai.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predicting plant leaf area production is required for modelling carbon balance and tiller dynamics in plant canopies. Plant leaf area production can be studied using a framework based on radiation intercepted, radiation use efficiency (RUE) and leaf area ratio (LAR) (ratio of leaf area to net above-ground biomass). The objective of this study was to test this framework for predicting leaf area production of sorghum during vegetative development by examining the stability of the contributing components over a large range of plant density. Four densities, varying from 2 to 16 plants m(-2), were implemented in a field experiment. Plants were either allowed to tiller or were maintained as uniculm by systematic tiller removal. In all cases, intercepted radiation was recorded daily and leaf area and shoot dry matter partitioning were quantified weekly at individual culm level. Up to anthesis, a unique relationship applied between fraction of intercepted radiation and leaf area index, and between shoot dry weight accumulation and amount of intercepted radiation, regardless of plant density. Partitioning of shoot assimilate between leaf, stem and head was also common across treatments up to anthesis, at both plant and culm levels. The relationship with thermal time (TT) from emergence of specific leaf area (SLA) and LAR of tillering plants did not change with plant density. In contrast, SLA of uniculm plants was appreciably lower under low-density conditions at any given TT from emergence. This was interpreted as a consequence of assimilate surplus arising from the inability of the plant to compensate by increasing the leaf area a culm could produce. It is argued that the stability of the extinction coefficient, RUE and plant LAR of tillering plants observed in these conditions provides a reliable way to predict leaf area production regardless of plant density. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biotecnologia em Controlo Biológico, 18 de Dezembro de 2013, Universidade dos Açores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rosewood (Aniba rosaeodora Ducke) is a native tree species of Amazon rainforest growing naturally in acidic forest soils with reduced redox potential. However, this species can also been found growing in forest gaps containing oxide soils. Variations in the forms of mineral nitrogen (NO3- or NH4+) may be predicted in these different edaphic conditions. Considering that possibility, an experiment was carried out to analyze the effects of different NO3-:NH4+ ratios on the growth performance, mineral composition, chloroplastid pigment contents, photochemical efficiency photosystem II (PSII), and nitrate redutase activity (RN, E.C.1.6.6.1) on A. rosaeodora seedlings. Nine-month-old seedlings were grown in pots with a washed sand capacity of 7.5 kg and submitted to different NO3-:NH4+ ratios (T1 = 0:100%, T2 = 25:75%, T3 = 50:50%, T4 = 75:25%, and T5 = 100:0%). The lowest relative growth rate was observed when the NO3-:NH4+ ratio was equal to 0:100%. In general, high concentrations of NO3- rather than NH4+ favored a greater nutrient accumulation in different parts of the plant. For the chloroplastid pigment, the highest Chl a, Chl b, Chl tot, Chl a/b and Chl tot/Cx+c contents were found in the treatment with 75:25% of NO3-:NH4+, and for Chl b and Cx+c it was observed no difference. In addition, there was a higher photochemical efficiency of PSII (Fv/Fm) when high NO3- concentrations were used. A linear and positive response for the nitrate reductase activity was recorded when the nitrate content increased on the culture substrate. Our results suggest that A. rosaeodora seedlings have a better growth performance when the NO3- concentrations in the culture substrate were higher than the NH4+ concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the field, immature individuals of Ascia monuste orseis (Godart), the kale caterpillars, migrate in great proportion to other regions of the host in order to complete their development; there, they find leaves of different ages and are exposed to the nutritional variation of these leaves. The objective of this study was to find out how the change to leaves of different ages affects the A. monuste orseis performance. The experiments were carried out providing one kind of leaf during the three first instars, and afterwards providing leaves of different ages during the fourth and fifth instars, since it is in these two instars that the changing movement prevails in that species. The parameters to measure performance were time of development (both to complete the three first instars and the fourth and fifth instars), ingestion of food, incorporated biomass, digestive indices that evaluated efficiency in food utilization, relative growth and intake rates, percentage of emergence, weight and size of the adults. In general, the caterpillars which were first fed on new leaves presented a better performance, but this study concluded that the A. monuste orseis caterpillars have shown skills to compensate food with lower nutritional value or less abundant in nature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physiological and morphological responses of the forage grasses Brachiaria brizantha cv. Marandu, B. decumbens and B. humidicola were compared for plants grown in pots under flooding and well-drained conditions for 14 days. Flooding reduced specific leaf area and biomass allocation to roots in all species and enhanced leaf senescence in B. brizantha and B. decumbens. Relative growth rate was reduced by flooding in B. brizantha and B. decumbens, but not in B. humidicola.Leaf elongation rate was unaffected by flooding in B. decumbens and B. humidicola, but declined in B. brizantha since the first day of flooding. Net photosynthesis and leaf chlorophyll content were reduced by flooding in B. brizantha; however, no flooding effect could be detected in the other two species. For all species, there was a close relationship between net photosynthesis and stomatal conductance under flooding. These results show that the studied species have distinct degrees of tolerance to flood, B. brizantha is intolerant, B. decumbens is moderately tolerant and B. humidicola is tolerant. Because leaf elongation rate was immediately depressed by flooding only in B. brizantha, this measurement could be appropriate as an early detection mechanism for relative flood tolerance in Brachiaria spp.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some physiological and morphological responses of five Brachiaria brizantha accessions (BRA000591 cultivar Marandu, BRA003441, BRA002844, BRA004308 and BRA004391) were compared for plants grown in pots under flooding and well-drained conditions for 14 days. Flooding caused a significant reduction in leaf dry mass production in all accessions, but, for root biomass, no differences between treatments could be detected in BRA003441 and BRA004391. No adventitious root production was observed in flooded BRA003441; all other accessions produced adventitious roots when flooded. Relative growth rate was reduced by flooding only in BRA000591 and BRA004308. Leaf elongation rate was reduced by flooding in all accessions, however, more severely in BRA003441. Net photosynthesis was reduced by flooding in all accessions, but with less intensity in BRA004391. For all accessions, there was a close relationship between net photosynthesis and stomatal conductance under flooding. The five accessions tested differed in tolerance to flooding. BRA004391 was the most tolerant. Accession BRA003441 was the most sensitive, followed by BRA000591 cultivar Marandu. Accessions BRA002844 and BRA004308 were classified as intermediate in flooding tolerance.