972 resultados para Regression method


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho apresenta uma nova metodologia para estimar a contribuição harmônica de múltiplas cargas geradoras de harmônicos na distorção de tensão de um sistema elétrico. Essa metodologia cria modelos estatísticos que descrevem o comportamento da tensão harmônica de um sistema elétrico qualquer em função da corrente harmônica das cargas presentes nele, de tal forma, que seja possível avaliar o impacto das cargas geradoras de harmônicos nos níveis de distorção harmônica de tensão do sistema elétrico em análise. A criação desses modelos é realizada com base no método estatístico chamado de regressão polinomial local de kernel, que é um método de regressão não paramétrica, cuja característica principal é criar modelos não condicionados a uma família específica de curvas de regressão, ou seja, os dados são os únicos responsáveis pelo formato do modelo. Uma vez criado o modelo, estima-se a tensão harmônica que as cargas provocaram no período em análise e, por fim, avalia-se seu valor em relação à medida.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente estudo realiza estimativas da condutividade térmica dos principais minerais formadores de rochas, bem como estimativas da condutividade média da fase sólida de cinco litologias básicas (arenitos, calcários, dolomitos, anidritas e litologias argilosas). Alguns modelos térmicos foram comparados entre si, possibilitando a verificação daquele mais apropriado para representar o agregado de minerais e fluidos que compõem as rochas. Os resultados obtidos podem ser aplicados a modelamentos térmicos os mais variados. A metodologia empregada baseia-se em um algoritmo de regressão não-linear denominado de Busca Aleatória Controlada. O comportamento do algoritmo é avaliado para dados sintéticos antes de ser usado em dados reais. O modelo usado na regressão para obter a condutividade térmica dos minerais é o modelo geométrico médio. O método de regressão, usado em cada subconjunto litológico, forneceu os seguintes valores para a condutividade térmica média da fase sólida: arenitos 5,9 ± 1,33 W/mK, calcários 3.1 ± 0.12 W/mK, dolomitos 4.7 ± 0.56 W/mK, anidritas 6.3 ± 0.27 W/mK e para litologias argilosas 3.4 ± 0.48 W/mK. Na sequência, são fornecidas as bases para o estudo da difusão do calor em coordenadas cilíndricas, considerando o efeito de invasão do filtrado da lama na formação, através de uma adaptação da simulação de injeção de poços proveniente das teorias relativas à engenharia de reservatório. Com isto, estimam-se os erros relativos sobre a resistividade aparente assumindo como referência a temperatura original da formação. Nesta etapa do trabalho, faz-se uso do método de diferenças finitas para avaliar a distribuição de temperatura poço-formação. A simulação da invasão é realizada, em coordenadas cilíndricas, através da adaptação da equação de Buckley-Leverett em coordenadas cartesianas. Efeitos como o aparecimento do reboco de lama na parede do poço, gravidade e pressão capilar não são levados em consideração. A partir das distribuições de saturação e temperatura, obtém-se a distribuição radial de resistividade, a qual é convolvida com a resposta radial da ferramenta de indução (transmissor-receptor) resultando na resistividade aparente da formação. Admitindo como referência a temperatura original da formação, são obtidos os erros relativos da resistividade aparente. Através da variação de alguns parâmetros, verifica-se que a porosidade e a saturação original da formação podem ser responsáveis por enormes erros na obtenção da resistividade, principalmente se tais "leituras" forem realizadas logo após a perfuração (MWD). A diferença de temperatura entre poço e formação é a principal causadora de tais erros, indicando que em situações onde esta diferença de temperatura seja grande, perfilagens com ferramentas de indução devam ser realizadas de um a dois dias após a perfuração do poço.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJETIVO: Foi avaliar a frequência e os fatores de risco de quedas em mulheres na pós-menopausa. MÉTODOS: Estudo clínico, transversal, envolvendo 358 mulheres (idade entre 45 e 65 anos e amenorreia >12 meses) com tempo de pós-menopausa <10 anos. Os critérios de exclusão foram: doença neurológica ou músculo esquelético, vestibulopatias, hipertensão arterial não controlada, hipotensão postural, déficit visual sem correção, uso de medicamentos (sedativos e hipnóticos). A queda foi definida como mudança de posição inesperada, não intencional, que faz com que o indivíduo permaneça em nível inferior à posição inicial. Foram analisados o histórico de quedas (últimos 24 meses) e as características clínicas, antropométricas (índice de massa corpórea (IMC) e circunferência da cintura (CC)) e densidade mineral óssea. Na comparação segundo grupo de mulheres com e sem histórico de queda, foi empregado o Teste do Qui-quadrado ou Exato de Fisher e regressão logística com cálculo do odds ratio (OR). RESULTADOS: Entre as mulheres incluídas, 48,0% (172/358) referiram queda, com fratura em 17,4% (30/172). A queda ocorreu dentro de casa em 58,7% (101/172). A média de idade foi 55,7±6,5 anos, tempo de menopausa de 5,8±3,5anos, IMC 28,3±4,6 kg/m² e CC 89,0±11,4 cm. Foi observada maior frequência de tabagismo e diabetes entre as mulheres com histórico de quedas quando comparadas àquelas sem queda, de 25,6 versus 16,1% e 12,8 versus 5,9%, respectivamente (p<0,05). Na análise multivariada em função das variáveis clínicas influentes, o risco de queda aumentou com o tabagismo atual (OR 1,93; IC95% 1,01-3,71). Demais variáveis clínicas e antropométricas não influenciaram no risco de queda. CONCLUSÕES: Em mulheres na pós-menopausa inicial houve expressiva frequência de quedas. O tabagismo foi indicador clínico de risco para queda. Com o reconhecimento de fatores determinantes para queda, medidas preventivas são importantes, como a orientação de abolir o tabagismo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ginecologia, Obstetrícia e Mastologia - FMB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Genética e Melhoramento Animal - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Artificial neural networks (ANNs) have been widely applied to the resolution of complex biological problems. An important feature of neural models is that their implementation is not precluded by the theoretical distribution shape of the data used. Frequently, the performance of ANNs over linear or non-linear regression-based statistical methods is deemed to be significantly superior if suitable sample sizes are provided, especially in multidimensional and non-linear processes. The current work was aimed at utilising three well-known neural network methods in order to evaluate whether these models would be able to provide more accurate outcomes in relation to a conventional regression method in pupal weight predictions of Chrysomya megacephala, a species of blowfly (Diptera: Calliphoridae), using larval density (i.e. the initial number of larvae), amount of available food and pupal size as input data. It was possible to notice that the neural networks yielded more accurate performances in comparison with the statistical model (multiple regression). Assessing the three types of networks utilised (Multi-layer Perceptron, Radial Basis Function and Generalised Regression Neural Network), no considerable differences between these models were detected. The superiority of these neural models over a classical statistical method represents an important fact, because more accurate models may clarify several intricate aspects concerning the nutritional ecology of blowflies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bertuzzi, R, Bueno, S, Pasqua, LA, Acquesta, FM, Batista, MB, Roschel, H, Kiss, MAPDM, Serrao, JC, Tricoli, V, and Ugrinowitsch, C. Bioenergetics and neuromuscular determinants of the time to exhaustion at velocity corresponding to (V) over dotO(2)max in recreational long-distance runners. J Strength Cond Res 26(8): 2096-2102, 2012-The purpose of this study was to investigate the main bioenergetics and neuromuscular determinants of the time to exhaustion (T-lim) at the velocity corresponding to maximal oxygen uptake in recreational long-distance runners. Twenty runners performed the following tests on 5 different days: (a) maximal incremental treadmill test, (b) 2 submaximal tests to determine running economy and vertical stiffness, (c) exhaustive test to measured the T-lim, (d) maximum dynamic strength test, and (e) muscle power production test. Aerobic and anaerobic energy contributions during the T-lim test were also estimated. The stepwise multiple regression method selected 3 independent variables to explain T-lim variance. Total energy production explained 84.1% of the shared variance (p = 0.001), whereas peak oxygen uptake ((V) over dotO(2)peak) measured during T-lim and lower limb muscle power ability accounted for the additional 10% of the shared variance (p = 0.014). These data suggest that the total energy production, (V) over dotO(2)peak, and lower limb muscle power ability are the main physiological and neuromuscular determinants of T-lim in recreational long-distance runners.