954 resultados para Receptors, Oncostatin M
Resumo:
Epileptic seizures are hypersynchronous, paroxystic and abnormal neuronal discharges. Epilepsies are characterized by diverse mechanisms involving alteration of excitatory and inhibitory neurotransmission that result in hyperexcitability of the central nervous system (CNS). Enhanced neuronal excitability can also be achieved by inflammatory processes, including the participation of cytokines, prostaglandins or kinins, molecules known to be involved in either triggering or in the establishment of inflammation. Multiple inductions of audiogenic seizures in the Wistar audiogenic rat (WAR) strain are a model of temporal lobe epilepsy (TLE), due to the recruitment of limbic areas such as hippocampus and amygdata. In this study we investigated the modulation of the B-1 and B-2 kinin receptors expression levels in neonatal WARs as well as in adult WARs subjected to the TLE model. The expression levels of pro-inflammatory (IL-1 beta) and anti-inflammatory (IL-10) cytokines were also evaluated, as well as cyclooxygenase (COX-2). Our results showed that the B-1 and B-2 kinin receptors mRNAs were up-regulated about 7- and 4-fold, respectively, in the hippocampus of kindled WARs. On the other hand, the expressions of the IL-1 beta, IL-10 and COX-2 were not related to the observed increase of expression of kinin receptors. Based on those results we believe that the B, and B2 kinin receptors have a pivotal role in this model of TLE, although their participation is not related to an inflammatory process. We believe that kinin receptors in the CNS may act in seizure mechanisms by participating in a specific kininergic neurochemical pathway. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The insulin/insulin-like signaling (IIS) pathway is an evolutionarily conserved module in the control of body size and correlated organ growth in metazoans. In the highly eusocial bees, the caste phenotypes differ not only in size and several structural features but also in individual fitness and life history. We investigated the developmental expression profiles of genes encoding the two insulin-like peptides (AmILP-1 and AmILP-2) and the two insulin receptors (AmInR-1 and AmInR-2) predicted in the honey bee genome. Quantitative PCR analysis for queen and worker larvae in critical stages of caste development showed that AmILP-2 is the predominantly transcribed ILP in both castes, with higher expression in workers than in queens. Expression of both InR genes sharply declined in fourth instar queen larvae, but showed little modulation in workers. On first sight, these findings are non-intuitive, considering the higher growth rates of queens, but they can be interpreted as possibly antagonistic crosstalk between the IIS module and juvenile hormone. Analyzing AmInR-1 and AmInR-2 expression in ovaries of queen and worker larvae revealed low transcript levels in queens and a sharp drop in AmInR-2 expression in fifth instar worker larvae, indicating relative independence in tissue-specific versus overall IIS pathway activity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: Investigate the effects of antenatal steroids and tracheal occlusion on pulmonary expression of vascular endothelial growth factor receptors in rats with nitrofen-induced congenital diaphragmatic hernia. STUDY DESIGN: Fetuses were exposed to nitrofen at embryonic day 9.5. Subgroups received dexamethasone or were operated on for tracheal occlusion, or received combined treatment. Morphologic variables were recorded. To analyze vascular endothelial growth factor receptor 1 and vascular endothelial growth factor receptor 2 expression, we performed Western blotting and immunohistochemistry. Morphologic variables were analyzed by analysis of variance and immunohistochemistry by Kruskal-Wallis test. RESULTS: Congenital diaphragmatic hernia decreased body weight, total lung weight, and lung-to-body weight ratio. Tracheal occlusion increased total lung weight and lung-to-body weight ratio (P < .05). Fetuses with congenital diaphragmatic hernia had reduced vascular endothelial growth factor receptor 1 and vascular endothelial growth factor receptor 2 expression, whereas steroids and tracheal occlusion increased their expression. Combined treatment increased expression of receptors, but had no additive effect. CONCLUSION: Vascular endothelial growth factor signaling disruption may be associated with pulmonary hypertension in congenital diaphragmatic hernia. Tracheal occlusion and steroids provide a pathway for restoring expression of vascular endothelial growth factor receptors.
Resumo:
Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of worldwide significance. Infection with Hc produces a broad spectrum of diseases and may progress to a life-threatening systemic disease, particularly in individuals with HIV infection. Resolution of histoplasmosis is associated with the activation of cell-mediated immunity, and leukotriene B(4) plays an important role in this event. Lipid bodies (LBs) are increasingly being recognized as multifunctional organelles with roles in inflammation and infection. In this study, we investigated LB formation in histoplasmosis and its putative function in innate immunity. LB formation in leukocytes harvested from Hc-infected C57BL/6 mice peaks on day 2 postinfection and correlates with enhanced generation of lipid mediators, including leukotriene B(4) and PGE(2). Pretreatment of leukocytes with platelet-activating factor and BLT1 receptor antagonists showed that both lipid mediators are involved in cell signaling for LB formation. Alveolar leukocytes cultured with live or dead Hc also presented an increase in LB numbers. The yeast alkali-insoluble fraction 1, which contains mainly beta-glucan isolated from the Hc cell wall, induced a dose- and time-dependent increase in LB numbers, indicating that beta-glucan plays a signaling role in LB formation. In agreement with this hypothesis, beta-glucan-elicited LB formation was inhibited in leukocytes from 5-LO(-/-), CD18(low) and TLR2(-/-) mice, as well as in leukocytes pretreated with anti-Dectin-1 Ab. Interestingly, human monocytes from HIV-1-infected patients failed to produce LBs after beta-glucan stimulation. These results demonstrate that Hc induces LB formation, an event correlated with eicosanoid production, and suggest a role for these lipid-enriched organelles in host defense during fungal infection. The Journal of Immunology, 2009, 182: 4025-4035.
Resumo:
We report on the cardiovascular effects of L-glutamate (L-glu) microinjection into the hypothalamic paraventricular nucleus (PVN) as well as the mechanisms involved in their mediation. L-glu microinjection into the PVN caused dose-related pressor and tachycardiac responses in unanesthetized rats. These responses were blocked by intravenous (i.v.) pretreatment with the ganglion blocker pentolinium (PE; 5 mg/kg), suggesting sympathetic mediation. Responses to L-glu were not affected by local microinjection of the selective non-NMDA receptor antagonist NBQX (2 nmol) or by local microinjection of the selective NMDA receptor antagonist LY235959 (LY; 2 nmol). However, the tachycardiac response was changed to a bradycardiac response after treatment with LY235959, suggesting that NMDA receptors are involved in the L-glu heart rate response. Local pretreatment with LY235959 associated with systemic PE or dTyr(CH(2))(5)(Me)AVP (50 mu g/kg) respectively potentiated or blocked the response to L-glu, suggesting that L-glu responses observed after LY235959 are vasopressin mediated. The increased pressor and bradycardiac responses observed after LY + PE was blocked by subsequent i.v. treatment with the V(1)-vasopressin receptor antagonist dTyr(CH(2))(5)(Me)AVP, suggesting vasopressin mediation. The pressor and bradycardiac response to L-glu microinjection into the PVN observed in animals pretreated with LY + PE was progressively inhibited and even blocked by additional pretreatment with increasing doses of NBQX (2, 10, and 20 nmol) microinjected into the PVN, suggesting its mediation by local non-NMDA receptors. In conclusion, results suggest the existence of two glutamatergic pressor pathways in the PVN: one sympathetic pathway that is mediated by NMDA receptors and a vasopressinergic pathway that is mediated by non-NMDA receptors. (C) 2009 Wiley-Liss, Inc.
Resumo:
Sepsis is still a major cause of mortality in the intensive critical care unit and results from an overwhelming immune response to the infection. TNF signaling pathway plays a central role in the activation of innate immunity in response to pathogens. Using a model of polymicrobial sepsis by i.p. injection of cecal microflora, we demonstrate a critical role of TNFR1 and R2 activation in the deregulated immune responses and death associated with sepsis. A large and persistent production of TNF was found in wild-type (B6) mice. TNFR1/R2-deficient mice, compared with B6 mice, survive lethal polymicrobial infection with enhanced neutrophil recruitment and bacterial clearance in the peritoneal cavity. Absence of TNFR signaling leads to a decreased local and systemic inflammatory response with diminished organ injury. Furthermore, using TNFR1/R2-deficient mice, TNF was found to be responsible for a decrease in CXCR2 expression, explaining reduced neutrophil extravasation and migration to the infectious site, and in neutrophil apoptosis. In line with the clinical experience, administration of Enbrel, a TNF-neutralizing protein, induced however only a partial protection in B6 mice, with no improvement of clinical settings, suggesting that future TNF immunomodulatory strategies should target TNFR1 and R2. In conclusion, the present data suggest that the endogenous TNFR1/R2 signaling pathway in polymicrobial sepsis reduces neutrophil recruitment contributing to mortality and as opposed to pan-TNF blockade is an important therapeutic target for the treatment of polymicrobial sepsis. The Journal of Immunology, 2009, 182: 7855-7864.
Resumo:
Pharmacological studies have been focused on the involvement of different neural pathways in the organization of antinociception that follows tonic-clonic seizures, including 5-hydroxytryptamine (5-HT)-, norepinephrine-, acetylcholine- and endogenous opioid peptide-mediated mechanisms, giving rise to more in-depth comprehension of this interesting post-ictal antinociceptive phenomenon. The present work investigated the involvement of 5-HT(1A/1B), 5-HT(6), and 5-HT(7) serotonergic receptors through peripheral pretreatment with methiothepin at doses of 0.5, 1.0, 2.0 and 3.0 mg/kg in the organization of the post-ictal antinociception elicited by pharmacologically (with pentylenetetrazole at 64 mg/kg)-induced tonic-clonic seizures. Methiothepin at 1.0 mg/kg blocked the post-ictal antinociception recorded after the end of seizures, whereas doses of 2.0 and 3.0 mg/kg potentiated the post-ictal antinociception. The nociceptive thresholds were kept higher than those of the control group. However, when the same 5-hydroxytryptamine receptors antagonist was microinjected (at 1.0, 3.0 and 5.0 mu g/0.2 mu L) in the dorsal raphe nucleus, a mesencephalic structure rich in serotonergic neurons and 5-HT receptors, the post-ictal hypo-analgesia was consistently antagonized. The present findings suggest a dual effect of methiothepin, characterized by a disinhibitory effect on the post-ictal antinociception when peripherally administered (possibly due to an antagonism of pre-synaptic 5-HT(1A) serotonergic autoreceptors in the pain endogenous inhibitory system) and an inhibitory effect (possibly due to a DRN post-synaptic 5-HT(1B), 5-HT(6), and 5-HT(7) serotonergic receptors blockade) when centrally administered. The present data also Suggest that serotonin-mediated mechanisms of the dorsal raphe nucleus exert a key-role in the modulation of the post-ictal antinociception. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Endothelin may contribute to the development of inflammatory events such as leukocyte recruitment and nociception. Herein, we investigated whether endothelin-mediated mechanical hypernociception (decreased nociceptive threshold, evaluated by electronic pressure-meter) and neutrophil migration (myeloperoxidase activity) are inter-dependent in antigen challenge-induced Th1-driven hind-paw inflammation. In antigen challenge-induced inflammation, endothelin (ET) ET(A) and ET(B) receptor antagonism inhibited both hypernociception and neutrophil migration. Interestingly, ET-1 peptide-induced hypernociception was not altered by inhibiting neutrophil migration or endothelin ET(B) receptor antagonism, but rather by endothelin ET(A) receptor antagonism. Furthermore, endothelin ET(A), but not ET(B), receptor antagonism inhibited antigen-induced PGE(2) production, whereas either selective or combined blockade of endothelin ET(A) and/or ET(B) receptors reduced hypernociception and neutrophil recruitment caused by antigen challenge. Concluding, this study advances knowledge into the role for endothelin in inflammatory mechanisms and further supports the potential of endothelin receptor antagonists in controlling inflammation.
Resumo:
Evidences from studies using electrical or chemical stimulation of the midbrain periaqueductal gray (PAG) suggest that whereas the dorsal PAG is critical for the regulation of panic-related defensive behaviors, the ventrolateral PAG (vlPAG) modulates generalized anxiety-related responses. In the present study we evaluated whether the activation of 5-HT1A and 5-HT2A/2C receptors in the ventrolateral column of the periaqueductal gray (vlPAG) causes differential effects on an anxiety- and a panic-related defensive behavior, respectively, inhibitory avoidance and escape, in male Wistar rats submitted to the elevated T-maze. Our results showed that intra-vlPAG injection of the endogenous agonist serotonin, the 5-HT1A/7 agonist 8-OH-DPAT or 5-HT2A/2C agonist DOI impaired the acquisition of inhibitory avoidance, without interfering with escape performance. The same selective anxiolytic effect was also observed after local administration of the benzodiazepine receptor agonist midazolam. Moreover, as shown by the results of antagonism studies, 5-HT2A receptors are recruited for the anxiolysis caused by serotonin and DOI. while 5-HT1A receptors account for the effect of 8-OH-DPAT. In conclusion, our data show that the activation of 5-HT1A and 5-HT2A receptors in the vlPAG affects defensive responses related to generalized anxiety, but not panic disorder. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Changes in 5-HT1A receptor-mediated neurotransmission at the level of the median raphe nucleus (MRN) are reported to affect the expression of defensive responses that are associated with generalized anxiety disorder (e.g. inhibitory avoidance) but not with panic (e.g. escape). The objective of this study was to further explore the involvement of MRN 5-HT1A receptors in the regulation of generalized anxiety-related behaviours. Results of experiment 1 showed that intra-MRN injection of the 5-HT1A/7 receptor agonist 8-OH-DPAT (0.6 nmol) in male Wistar rats impaired the acquisition of inhibitory avoidance, without interfering with the performance of escape in the elevated T-maze test of anxiety. Pre-treatment with the 5-HT1A receptor antagonist WAY-100635 (0.18 nmol) fully blocked this anxiolytic-like effect. As revealed by experiment 2, intra-MRN injection of 8-OH-DPAT (0.6, 3 or 15 nmol) also caused anxiolytic effect in rats submitted to the light-dark transition test, another animal model that has been associated with generalized anxiety. In the same test, intra-MRN injection of WAY-100635 (0.18, 0.37 or 0.74 nmol) caused the opposite effect. Overall, the current findings support the view that MRN 5-HT neurons, through the regulation of 5-HT1A somatodendritic autoreceptors, are implicated in the regulation of generalized anxiety-associated behaviours. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The lateral septal area (LSA) is a part of the limbic system and is involved in cardiovascular modulation. We previously reported that microinjection of noradrenaline (NA) into the LSA of unanesthetized rats caused pressor responses that are mediated by acute vasopressin release. Magnocellular neurons of the paraventricular (PVN) and supraoptic (SON) of the hypothalamus synthesize vasopressin. In the present work, we studied which of these nuclei is involved in the pressor pathway activated by unilateral NA injection into the LSA as well as the local neurotransmitter involved. Chemical ablation of the SON by unilateral injection of the nonspecific synapses blocker cobalt chloride (1 mM/100 nl) did not affect the pressor response evoked by NA (21 nmol/200 nl) microinjection into the LSA. However, the response to NA was blocked when cobalt chloride (1 mM/100 nl) was microinjected into the PVN, indicating that this hypothalamic nucleus is responsible for the mediation of the pressor response. There is evidence in the literature pointing to glutamate as a putative neurotransmitter activating magnocellular neurons. Pretreatment of the PVN with the selective non-N-methyl-D-asparate (NMDA) antagonist NBQX (2 nmol/100 nl) blocked the pressor response to NA microinjected into the LSA, whereas pretreatment with the selective NMDA antagonist LY235959 (2 nmol/100 nl) did not affect the response to NA. Our results implicate the PVN as the final structure in the pressor pathway activated by the microinjection of NA into the LSA. They also indicate that local glutamatergic synapses and non-NMDA glutamatergic receptors mediate the response in the PVN. (c) 2008 Wiley-Liss, Inc.
Resumo:
The post-ictal immobility syndrome is followed by a significant increase in the nociceptive thresholds in animals and humans. The aim of this study was to assess the involvement of the dorsal raphe nucleus (DRN) in the post-ictal antinociception. The second aim was to study the role of serotonergic intrinsic mechanisms of the DRN in this hypo-algesic phenomenon. Pentylenetetrazole (PTZ), an ionophore GABA-mediated Cl- influx antagonist, was peripherally used to induce tonic-clonic seizures in Wistar rats. The nociceptive threshold was measured by the tail-flick test. Neurochemical lesions of the DRN, performed with microinjection of ibotenic acid (1.0 mu g/0.2 mu L), caused a significant decrease of tonic-clonic seizure-induced antinociception, suggesting the involvement of this nucleus in this antinociceptive Process. Microinjections of methysergide (1.0 and 5.0 mu g/0.2 mu L), a non-selective serotonergic receptor antagonist, into DRN caused a significant decrease in the post-ictal antinociception in seizing animals, compared to controls, in all post-ictal periods Presently studied. These findings were corroborated by microinjections of ketanserin (at 1.0 and 5.0 mu g/0.2 mu L) into DRN. Ketanserin is an antagonist with large affinity for 5-HT2A/2C serotonergic receptors, which, in this Case, Caused a significant decrease in the tail-flick latencies in seizing animals, compared to controls after the first 20 min following tonic-clonic convulsive reactions. These results indicate that serotonergic neurotransmission of the DRN neuronal clusters is involved in the organization of the post-ictal hypo-algesia. The 5-HT2A/2C receptors of DRN neurons seem to be critically involved in the increase of nociceptive thresholds following tonic-clonic seizures. (c) 2008 Elsevier Inc, All rights reserved.
Resumo:
There are contradictory results concerning the effects of systemic injections of cannabinoid agonists in anxiety-induced behavioral changes. Direct drug administration into brain structures related to defensive responses could help to clarify the role of cannabinoids in these changes. Activation of cannabinoid CB, receptors in the dorsolateral periaqueductal gray induces anxiolytic-like effects in the elevated plus maze. The aim of this work was to verify if facilitation of endocannabinoid-mediated neurotransmission in this region would also produce anxiolytic-like effects in another model of anxiety, the Vogel conflict test. Male Wistar rats (n = 5-9/group) with cannulae aimed at the dorsolateral periaqueductal gray were water deprived for 24 h and pre-exposed to the apparatus where they were allowed to drink for 3 min. After another 24 h-period of water deprivation, they received the microinjections and, 10 min later, were placed into the experimental box. in this box an electrical shock (0.5 nnA, 2 s) was delivered in the spout of a drinking bottle at every twenty licks. The animals received a first microinjection of vehicle (0.2 mu l) or AM251 (a cannabinoid CB1 receptor antagonist; 100 pmol) followed, 5 min later, by a second microinjection of vehicle, anandamide (an endocannabinoid, 5 pmol), AM404 (an inhibitor of anandamide uptake, 50 pmol) or URB597 (an inhibitor of Fatty Acid Amide Hydrolase, 0.01 or 0.1 nmol). Anandamide, AM404 and URB597 (0.01 nmol) increased the total number of punished licks. These effects were prevented by AM251. The results give further support to the proposal that facilitation of CB1 receptor-mediated endocannabinoid neurotransmission in the dorsolateral periaqueductal gray modulates defensive responses. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Rationale Conditioned fear to context causes freezing and cardiovascular changes in rodents and has been used to measure anxiety. It also activates the dorsolateral column of the periaqueductal gray (dlPAG). Microinjections of cannabinoid agonists into the dlPAG produced anxiolytic-like effects in the elevated plus maze, but the effects of these treatments on fear conditioning remains unknown. Objective The objective of this study was to verify if intra-dlPAG injection of the CB1 cannabinoid receptor agonist anandamide (AEA) or the anandamide transport inhibitor AM404 would attenuate behavioral (freezing) and cardiovascular (increase of arterial pressure and heart rate) responses of rats submitted to a contextual fear-conditioning paradigm. Materials and methods Male Wistar rats with cannulae aimed at the dlPAG were re-exposed to a chamber where they had received footshocks 48 h before. Fifteen minutes before the test, the animals received a first intra-dlPAG injection of vehicle or AM251, a CB1 receptor antagonist (100 pmol/200 nl), followed 5 min later by vehicle, AEA (5 pmol/200 nl) or AM404 (50 pmol/200 nl). Freezing and cardiovascular responses were recorded for 10 min. Results Freezing and cardiovascular responses were reduced by administration of either AEA or AM404 into the dlPAG before re-exposition to the aversively conditioned context. These effects were abolished when the animals were locally pretreated with AM251. The latter drug, even at a higher dose (300 pmol), was ineffective when administered alone into the dlPAG. Conclusion The results suggest that facilitation of endocannabinoid-mediated neurotransmission in the dlPAG, through activation of local CB1 receptors, attenuates the expression of contextual fear responses.
Resumo:
We evaluated the involvement of dorsal hippocampus (DH) 5-HT1A receptors in the mediation of the behavioral effects caused by the pharmacological manipulation of 5-HT neurons in the median raphe nucleus (MRN). To this end, we used the rat elevated T-maze test of anxiety. The results showed that intra-DH injection of the 5-HT1A/7 agonist 8-OH-DPAT facilitated inhibitory avoidance, an anxiogenic effect, without affecting escape. Microinjection of the 5-HT1A antagonist WAY-100635 was ineffective. In the elevated T-maze, inhibitory avoidance and escape have been related to generalized anxiety and panic disorders, respectively. Intra-MRN administration of the excitatory aminoacid kainic acid, which non-selectively stimulates 5-HT neurons in this brain area facilitated inhibitory avoidance and impaired escape performance, but also affected locomotion. Intra-MRN injection of WAY-100635, which has a disinhibitory effect on the activity of 5-HT neurons in this midbrain area, only facilitated inhibitory avoidance. Preadministration of WAY-100635 into the DH blocked the behavioral effect of intra-MRN injection of WAY-100635, but not of kainic acid. These results indicate that DH 5-HT1A receptors mediate the anxiogenic effect induced by the selective stimulation of 5-HT neurons in the MRN. (c) 2007 Elsevier B.V. and ECNP. All rights reserved.