993 resultados para Receptor Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Peroxisome Proliferator-Activated Receptors (PPARs) form a family of three nuclear receptors regulating important cellular and metabolic functions. PPARs control gene expression by directly binding to target promoters as heterodimers with the Retinoid X Receptor (RXR), and their transcriptional activity is enhanced upon activation by natural or pharmacological ligands. The binding of PPAR/RXR heterodimers on target promoters allows the anchoring of a series of coactivators and corepressors involved in promoter remodeling and the recruitment of the transcription machinery. The transcriptional output finally depends on a complex interplay between (i) the respective expression levels of PPARs, RXRs and of other nuclear receptors competing for DNA binding and RXR recruitment, (ii) the availability and the nature of PPAR and RXR ligands, (iii) the expression levels and the nature of the different coactivators and corepressors and (iv) the sequence and the epigenetic status of the promoter. Understanding how all these factors and signals integrate and fine-tune transcription remains a challenge but is necessary to understand the specificity of the physiological functions regulated by PPARs. The work presented herein focuses on the molecular mechanisms of PPAR action and aims at understanding how the interactions and mobility of the receptor modulate transcription in the physiological context of a living cell: Such observations in vivo rely on the use of engineered fluorescent protein chimeras and require the development and the application of complementary imaging techniques such as Fluorescence Recovery After Photobleaching (FRAP), Fluorescence Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS). Using such techniques, PPARs are shown to reside solely in the nucleus where they are constitutively associated with RXR but transcriptional activation by ligand binding -does not promote the formation of sub-nuclear structures as observed with other nuclear receptors. In addition, the engagement of unliganded PPARs in large complexes of cofactors in living cells provides a molecular basis for their ligand-independent activity. Ligand binding reduces receptor diffusion by promoting the recruitment of coactivators which further enlarge the size of PPAR complexes to acquire full transcriptional competence. Using these molecular approaches, we deciphered the molecular mechanisms through which phthalates, a class of pollutants from the plastic industry, interfere with PPARγ signaling. Mono-ethyl-hexyl-phthalate (MEHP) binding induces the recruitment of a specific subset of cofactors and translates into the expression of a specific subset of target genes, the transcriptional output being strongly conditioned by the differentiation status of the cell. This selective PPARγ modulation induces limited adipogenic effects in cellular models while exposure to phthalates in animal models leads to protective effects on glucose tolerance and diet-induced obesity. These results demonstrate that phthalates influence lipid and carbohydrate metabolism through complex mechanisms which most likely involve PPARγ but also probably PPARα and PPARß, Altogether, the molecular and physiological demonstration of the interference of pollutants with PPAR action outlines an important role of chemical exposure in metabolic regulations. Résumé Les PPARs (Peroxisome Proliferator-Activated Receptors) forment une famille de récepteurs nucléaires qui régulent des fonctions cellulaires et métaboliques importantes. Les PPARs contrôlent l'expression des gènes en se liant directement à leurs promoteurs sous forme d'hétérodimères avec les récepteurs RXR (Retinoid X Receptor), et leur activité transcriptionnelle est stimulée par la liaison de ligands naturels ou pharmacologiques. L'association des hétérodimères PPAR/RXR avec les promoteurs des gènes cibles permet le recrutement de coactivateurs et de corépresseurs qui vont permettre le remodelage de la chromatine et le recrutement de la machinerie transcriptionnelle. Les actions transcriptionnelles du récepteur dépendent toutefois d'interactions complexes qui sont régulées par (i) le niveau d'expression des PPARs, des RXRs et d'autres récepteurs nucléaires entrant en compétition pour la liaison à l'ADN et l'association avec RXR, (ii) la disponibilité et la nature de ligands de PPAR et de RXR, (iii) les niveaux d'expression et la nature des différents coactivateurs et corépresseurs et (iv) la séquence et le marquage épigénétique des promoteurs. La compréhension des mécanismes qui permettent d'intégrer ces aspects pour assurer une régulation fine de l'activité transcriptionnelle est un défi qu'il est nécessaire de relever pour comprendre la spécificité des fonctions physiologiques régulées par les PPARs. Ce travail concerne l'étude des mécanismes d'action moléculaire des PPARs et vise à mieux comprendre comment les interactions du récepteur avec d'autres protéines ainsi que la mobilité de ce dernier régulent son activité transcriptionnelle dans le contexte physiologique des cellules vivantes. De telles observations reposent sur l'emploi de protéines fusionnées à des protéines fluorescentes ainsi que sur le développement et l'utilisation de techniques d'imagerie complémentaires telles que le FRAP (Fluorescence Recovery After Photobleaching), le FRET (Fluorescence Resonance Energy Transfer) ou la FCS (Fluorescence Corrélation Spectroscopy). En appliquant ces méthodes, nous avons pu montrer que les PPARs résident toujours dans le noyau où ils sont associés de manière constitutive à RXR, mais que l'ajout de ligand n'induit pas la formation de structures sub-nucléaires comme cela a pu être décrit pour d'autres récepteurs nucléaires. De plus, les PPARs sont engagés dans de larges complexes protéiques de cofacteurs en absence de ligand, ce qui procure une explication moléculaire à leur activité ligand-indépendante. La liaison du ligand réduit la vitesse de diffusion du récepteur en induisant le recrutement de coactivateurs qui augmente encore plus la taille des complexes afin d'acquérir un potentiel d'activation maximal. En utilisant ces approches moléculaires, nous avons pu caractériser les mécanismes permettant aux phtalates, une classe de polluants provenant de l'industrie plastique, d'interférer avec PPARγ. La liaison du mono-ethyl-hexyl-phtalate (NERF) à PPARγ induit un recrutement sélectif de cofacteurs, se traduisant par l'induction spécifique d'un sous-ensemble de gènes qui varie en fonction du niveau de différentiation cellulaire. La modulation sélective de PPARγ par le MEHP provoque une adipogenèse modérée dans des modèles cellulaires alors que l'exposition de modèles animaux aux phtalates induit des effets bénéfiques sur la tolérance au glucose et sur le développement de l'obésité. Toutefois, les phtalates ont une action complexe sur le métabolisme glucido-lipidique en faisant intervenir PPARγ mais aussi probablement PPARα et PPARß. Cette démonstration moléculaire et physiologique de l'interférence des polluants avec les récepteurs nucléaires PPAR souligne un rôle important de l'exposition à de tels composés dans les régulations métaboliques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamic properties of helix 12 in the ligand binding domain of nuclear receptors are a major determinant of AF-2 domain activity. We investigated the molecular and structural basis of helix 12 mobility, as well as the involvement of individual residues with regard to peroxisome proliferator-activated receptor alpha (PPARalpha) constitutive and ligand-dependent transcriptional activity. Functional assays of the activity of PPARalpha helix 12 mutants were combined with free energy molecular dynamics simulations. The agreement between the results from these approaches allows us to make robust claims concerning the mechanisms that govern helix 12 functions. Our data support a model in which PPARalpha helix 12 transiently adopts a relatively stable active conformation even in the absence of a ligand. This conformation provides the interface for the recruitment of a coactivator and results in constitutive activity. The receptor agonists stabilize this conformation and increase PPARalpha transcription activation potential. Finally, we disclose important functions of residues in PPARalpha AF-2, which determine the positioning of helix 12 in the active conformation in the absence of a ligand. Substitution of these residues suppresses PPARalpha constitutive activity, without changing PPARalpha ligand-dependent activation potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have characterized the pharmacological antagonism, i.e., neutral antagonism or inverse agonism, displayed by a number of alpha-blockers at two alpha1-adrenergic receptor (AR) subtypes, alpha(1a)- and alpha(1b)-AR. Constitutively activating mutations were introduced into the alpha(1a)-AR at the position homologous to A293 of the alpha(1b)-AR where activating mutations were previously described. Twenty-four alpha-blockers differing in their chemical structures were initially tested for their effect on the agonist-independent inositol phosphate response mediated by the constitutively active A271E and A293E mutants expressed in COS-7 cells. A selected number of drugs also were tested for their effect on the small, but measurable spontaneous activity of the wild-type alpha(1a)- and alpha(1b)-AR expressed in COS-7 cells. The results of our study demonstrate that a large number of structurally different alpha-blockers display profound negative efficacy at both the alpha(1a)- and alpha(1b)-AR subtypes. For other drugs, the negative efficacy varied at the different constitutively active mutants. The most striking difference concerns a group of N-arylpiperazines, including 8-[2-[4-(5-chloro-2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro [4, 5] decane-7,9-dione (REC 15/3039), REC 15/2739, and REC 15/3011, which are inverse agonists with profound negative efficacy at the wild-type alpha(1b)-AR, but not at the alpha(1a)-AR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the EU funded integrated project "ACuteTox" is to develop a strategy in which general cytotoxicity, together with organ-specific endpoints and biokinetic features, are taken into consideration in the in vitro prediction of oral acute systemic toxicity. With regard to the nervous system, the effects of 23 reference chemicals were tested with approximately 50 endpoints, using a neuronal cell line, primary neuronal cell cultures, brain slices and aggregated brain cell cultures. Comparison of the in vitro neurotoxicity data with general cytotoxicity data generated in a non-neuronal cell line and with in vivo data such as acute human lethal blood concentration, revealed that GABA(A) receptor function, acetylcholine esterase activity, cell membrane potential, glucose uptake, total RNA expression and altered gene expression of NF-H, GFAP, MBP, HSP32 and caspase-3 were the best endpoints to use for further testing with 36 additional chemicals. The results of the second analysis showed that no single neuronal endpoint could give a perfect improvement in the in vitro-in vivo correlation, indicating that several specific endpoints need to be analysed and combined with biokinetic data to obtain the best correlation with in vivo acute toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Broad-spectrum inhibitors of HDACs are therapeutic in many inflammatory disease models but exacerbated disease in a mouse model of atherosclerosis. HDAC inhibitors have anti- and proinflammatory effects on macrophages in vitro. We report here that several broad-spectrum HDAC inhibitors, including TSA and SAHA, suppressed the LPS-induced mRNA expression of the proinflammatory mediators Edn-1, Ccl-7/MCP-3, and Il-12p40 but amplified the expression of the proatherogenic factors Cox-2 and Pai-1/serpine1 in primary mouse BMM. Similar effects were also apparent in LPS-stimulated TEPM and HMDM. The pro- and anti-inflammatory effects of TSA were separable over a concentration range, implying that individual HDACs have differential effects on macrophage inflammatory responses. The HDAC1-selective inhibitor, MS-275, retained proinflammatory effects (amplification of LPS-induced expression of Cox-2 and Pai-1 in BMM) but suppressed only some inflammatory responses. In contrast, 17a (a reportedly HDAC6-selective inhibitor) retained anti-inflammatory but not proinflammatory properties. Despite this, HDAC6(-/-) macrophages showed normal LPS-induced expression of HDAC-dependent inflammatory genes, arguing that the anti-inflammatory effects of 17a are not a result of inhibition of HDAC6 alone. Thus, 17a provides a tool to identify individual HDACs with proinflammatory properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome associated with mutations in the cardiac ryanodine receptor gene (Ryr2) in the majority of patients. Previous studies of CPVT patients mainly involved probands, so current insight into disease penetrance, expression, genotype-phenotype correlations, and arrhythmic event rates in relatives carrying the Ryr2 mutation is limited. METHODS AND RESULTS: One-hundred sixteen relatives carrying the Ryr2 mutation from 15 families who were identified by cascade screening of the Ryr2 mutation causing CPVT in the proband were clinically characterized, including 61 relatives from 1 family. Fifty-four of 108 antiarrhythmic drug-free relatives (50%) had a CPVT phenotype at the first cardiological examination, including 27 (25%) with nonsustained ventricular tachycardia. Relatives carrying a Ryr2 mutation in the C-terminal channel-forming domain showed an increased odds of nonsustained ventricular tachycardia (odds ratio, 4.1; 95% CI, 1.5-11.5; P=0.007, compared with N-terminal domain) compared with N-terminal domain. Sinus bradycardia was observed in 19% of relatives, whereas other supraventricular dysrhythmias were present in 16%. Ninety-eight (most actively treated) relatives (84%) were followed up for a median of 4.7 years (range, 0.3-19.0 years). During follow-up, 2 asymptomatic relatives experienced exercise-induced syncope. One relative was not being treated, whereas the other was noncompliant. None of the 116 relatives died of CPVT during a 6.7-year follow-up (range, 1.4-20.9 years). CONCLUSIONS: Relatives carrying an Ryr2 mutation show a marked phenotypic diversity. The vast majority do not have signs of supraventricular disease manifestations. Mutation location may be associated with severity of the phenotype. The arrhythmic event rate during follow-up was low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Significance: Schizophrenia (SZ) and bipolar disorder (BD) are classified as two distinct diseases. However, accumulating evidence shows that both disorders share genetic, pathological, and epidemiological characteristics. Based on genetic and functional findings, redox dysregulation due to an imbalance between pro-oxidants and antioxidant defense mechanisms has been proposed as a risk factor contributing to their pathophysiology. Recent Advances: Altered antioxidant systems and signs of increased oxidative stress are observed in peripheral tissues and brains of SZ and BD patients, including abnormal prefrontal levels of glutathione (GSH), the major cellular redox regulator and antioxidant. Here we review experimental data from rodent models demonstrating that permanent as well as transient GSH deficit results in behavioral, morphological, electrophysiological, and neurochemical alterations analogous to pathologies observed in patients. Mice with GSH deficit display increased stress reactivity, altered social behavior, impaired prepulse inhibition, and exaggerated locomotor responses to psychostimulant injection. These behavioral changes are accompanied by N-methyl-D-aspartate receptor hypofunction, elevated glutamate levels, impairment of parvalbumin GABA interneurons, abnormal neuronal synchronization, altered dopamine neurotransmission, and deficient myelination. Critical Issues: Treatment with the GSH precursor and antioxidant N-acetylcysteine normalizes some of those deficits in mice, but also improves SZ and BD symptoms when given as adjunct to antipsychotic medication. Future Directions: These data demonstrate the usefulness of GSH-deficient rodent models to identify the mechanisms by which a redox imbalance could contribute to the development of SZ and BD pathophysiologies, and to develop novel therapeutic approaches based on antioxidant and redox regulator compounds. Antioxid. Redox Signal. 18, 1428-1443.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of cannabis sativa preparations as recreational drugs can be traced back to the earliest civilizations. However, animal models of cannabinoid addiction allowing the exploration of neural correlates of cannabinoid abuse have been developed only recently. We review these models and the role of the CB1 cannabinoid receptor, the main target of natural cannabinoids, and its interaction with opioid and dopamine transmission in reward circuits. Extensive reviews on the molecular basis of cannabinoid action are available elsewhere (Piomelli et al., 2000;Schlicker and Kathmann, 2001).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of new benzolactam derivatives was synthesized and the derivatives were evaluated for theiraffinities at the dopamine D1, D2, and D3 receptors. Some of these compounds showed high D2 and/orD3 affinity and selectivity over the D1 receptor. The SAR study of these compounds revealed structuralcharacteristics that decisively influenced their D2 and D3 affinities. Structural models of the complexesbetween some of the most representative compounds of this series and the D2 and D3 receptors wereobtained with the aim of rationalizing the observed experimental results. Moreover, selected compoundsshowed moderate binding affinity on 5-HT2A which could contribute to reducing the occurrence of extrapyramidalside effects as potential antipsychotics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor gamma (PPARgamma) is an essential regulator of adipocyte differentiation, maintenance, and survival. Deregulations of its functions are associated with metabolic diseases. We show here that deletion of one PPARgamma allele not only affected lipid storage but, more surprisingly, also the expression of genes involved in glucose uptake and utilization, the pentose phosphate pathway, fatty acid synthesis, lipolysis, and glycerol export as well as in IR/IGF-1 signaling. These deregulations led to reduced circulating adiponectin levels and an energy crisis in the WAT, reflected in a decrease to nearly half of its intracellular ATP content. In addition, there was a decrease in the metabolic rate and physical activity of the PPARgamma(+/-) mice, which was abolished by thiazolidinedione treatment, thereby linking regulation of the metabolic rate and physical activity to PPARgamma. It is likely that the PPARgamma(+/-) phenotype was due to the observed WAT dysfunction, since the gene expression profiles associated with metabolic pathways were not affected either in the liver or the skeletal muscle. These findings highlight novel roles of PPARgamma in the adipose tissue and underscore the multifaceted action of this receptor in the functional fine tuning of a tissue that is crucial for maintaining the organism in good health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) β/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARβ/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARβ/δ-null mice developed fewer and smaller skin tumours, and a PPARβ/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARβ/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARβ/δ and SRC and TGFβ1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARβ/δ modulators to attenuate the development of several epithelial cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Toll-like receptors (TLRs) are essential components of the immune response to fungal pathogens. We examined the role of TLR polymorphisms in conferring a risk of invasive aspergillosis among recipients of allogeneic hematopoietic-cell transplants. METHODS: We analyzed 20 single-nucleotide polymorphisms (SNPs) in the toll-like receptor 2 gene (TLR2), the toll-like receptor 3 gene (TLR3), the toll-like receptor 4 gene (TLR4), and the toll-like receptor 9 gene (TLR9) in a cohort of 336 recipients of hematopoietic-cell transplants and their unrelated donors. The risk of invasive aspergillosis was assessed with the use of multivariate Cox regression analysis. The analysis was replicated in a validation study involving 103 case patients and 263 matched controls who received hematopoietic-cell transplants from related and unrelated donors. RESULTS: In the discovery study, two donor TLR4 haplotypes (S3 and S4) increased the risk of invasive aspergillosis (adjusted hazard ratio for S3, 2.20; 95% confidence interval [CI], 1.14 to 4.25; P=0.02; adjusted hazard ratio for S4, 6.16; 95% CI, 1.97 to 19.26; P=0.002). The haplotype S4 was present in carriers of two SNPs in strong linkage disequilibrium (1063 A/G [D299G] and 1363 C/T [T399I]) that influence TLR4 function. In the validation study, donor haplotype S4 also increased the risk of invasive aspergillosis (adjusted odds ratio, 2.49; 95% CI, 1.15 to 5.41; P=0.02); the association was present in unrelated recipients of hematopoietic-cell transplants (odds ratio, 5.00; 95% CI, 1.04 to 24.01; P=0.04) but not in related recipients (odds ratio, 2.29; 95% CI, 0.93 to 5.68; P=0.07). In the discovery study, seropositivity for cytomegalovirus (CMV) in donors or recipients, donor positivity for S4, or both, as compared with negative results for CMV and S4, were associated with an increase in the 3-year probability of invasive aspergillosis (12% vs. 1%, P=0.02) and death that was not related to relapse (35% vs. 22%, P=0.02). CONCLUSIONS: This study suggests an association between the donor TLR4 haplotype S4 and the risk of invasive aspergillosis among recipients of hematopoietic-cell transplants from unrelated donors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) ligand and receptor superfamily members play critical roles in diverse developmental and pathological settings. In search for novel TNF superfamily members, we identified a murine chromosomal locus that contains three new TNF receptor-related genes. Sequence alignments suggest that the ligand binding regions of these murine TNF receptor homologues, mTNFRH1, -2 and -3, are most homologous to those of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors. By using a number of in vitro ligand-receptor binding assays, we demonstrate that mTNFRH1 and -2, but not mTNFRH3, bind murine TRAIL, suggesting that they are indeed TRAIL receptors. This notion is further supported by our demonstration that both mTNFRH1:Fc and mTNFRH2:Fc fusion proteins inhibited mTRAIL-induced apoptosis of Jurkat cells. Unlike the only other known murine TRAIL receptor mTRAILR2, however, neither mTNFRH2 nor mTNFRH3 has a cytoplasmic region containing the well characterized death domain motif. Coupled with our observation that overexpression of mTNFRH1 and -2 in 293T cells neither induces apoptosis nor triggers NFkappaB activation, we propose that the mTnfrh1 and mTnfrh2 genes encode the first described murine decoy receptors for TRAIL, and we renamed them mDcTrailr1 and -r2, respectively. Interestingly, the overall sequence structures of mDcTRAILR1 and -R2 are quite distinct from those of the known human decoy TRAIL receptors, suggesting that the presence of TRAIL decoy receptors represents a more recent evolutionary event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cells belong to two mutually exclusive lineages expressing either alpha beta or gamma delta T-cell receptors (TCR). Although alpha beta and gamma delta cells are known to share a common precursor the role of TCR rearrangement and specificity in the lineage commitment process is controversial. Instructive lineage commitment models endow the alpha beta or gamma delta TCR with a deterministic role in lineage choice, whereas separate lineage models invoke TCR-independent lineage commitment followed by TCR-dependent selection and maturation of alpha beta and gamma delta cells. Here we review the published data pertaining to the role of the TCR in alpha beta/gamma delta lineage commitment and provide some additional information obtained from recent intracellular TCR staining studies. We conclude that a variant of the separate lineage model is best able to accommodate all of the available experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor (PPAR) family comprises three distinct isotypes: PPARalpha, PPARbeta/delta and PPARgamma. PPARs are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. Until recently, the characterisation of the important role of PPARalpha in fatty acid oxidation and of PPARgamma in lipid storage contrasted with the sparse information concerning PPARbeta/delta. However, evidence is now emerging for a role of PPARbeta/delta in tissue repair and energy homeostasis. Experiments with tissue-specific overexpression of PPARbeta/delta or treatment of mice with selective PPARbeta/delta agonists demonstrated that activation of PPARbeta/delta in vivo increases lipid catabolism in skeletal muscle, heart and adipose tissue and improves the serum lipid profile and insulin sensitivity in several animal models. PPARbeta/delta activation also prevents the development of obesity and improves cholesterol homeostasis in obesity-prone mouse models. These new insights into PPARbeta/delta functions suggest that targeting PPARbeta/delta may be helpful for treating disorders associated with the metabolic syndrome. Although these perspectives are promising, several independent and contradictory reports raise concerns about the safety of PPARbeta/delta ligands with respect to tumourigenic activity in the gut. Thus, it appears that further exploration of PPARbeta/delta functions is necessary to better define its potential as a therapeutic target.