923 resultados para Ratio-Dependant Predator-Prey Model
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O uso da resistência de plantas associado a agentes de controle biológico pode ser uma alternativa viável no controle de Schizaphis graminum (Rondani) em sorgo. Objetivou-se estudar diferentes relações predador:presa em genótipos de sorgo resistente (TX 430 x GR 111), moderadamente resistente (GB 3B) e suscetível (BR 007B) para o controle do pulgão-verde por Chrysoperla externa (Hagen). Para isso foram realizadas, em condições de casa-de-vegetação, liberações do crisopídeo nas relações predador:presa de 1:5; 1:10; 1:25 e 1:50. O genótipo TX 430 x GR 111 foi o mais eficiente no controle do pulgão-verde, S. graminum, assim como as relações predador:presa de 1:5 e de 1:10 nos três genótipos. A interação resistência de plantas e controle biológico foi positiva e permitiu controle acima de 80% nas relações predador:presa de 1:5 e 1:10 no material resistente TX 430 x GR 111; no genótipo GB 3B o melhor controle foi obtido com 1 predador: 5 presas.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Optimal foraging theory assumes that predators use different prey types to maximize their rate of energetic gain. Studies focusing on prey preference are important sources of information to understand the foraging dynamics of Chrysomya albiceps. The purpose of this investigation is to determine the influence of larval starvation in C. albiceps on the predation rate of different prey blowfly species and instars under laboratory conditions. Our results suggest that C. albiceps prefers Cochliomyia macellaria larvae to Chrysomya megacephala under non-starvation and starvation conditions. Nevertheless, predators gained more weight consuming C. macellaria. This result suggests that C. albiceps profit more in consuming C. macellaria rather than C. megacephala. The foraging behaviour displayed by C. abiceps on their prey and the consequences for the blowfly community are also discussed.
Resumo:
The vertebrate predators of post-metamorphic anurans were quantified and the predator-prey relationship was investigated by analysing the relative size of invertebrate predators and anurans. More than 100 vertebrate predators were identified (in more than 200 reports) and classified as opportunistic, convenience, temporary specialized and specialized predators. Invertebrate predators were classified as solitary non-venomous, venomous and social foragers according to 333 reviewed reports. Each of these categories of invertebrate predators was compared with the relative size of the anurans, showing an increase in the relative size of the prey when predators used special predatory tactics. The number of species and the number of families of anurans that were preyed upon did not vary with the size of the predator, suggesting that prey selection was not arbitrary and that energetic constraints must be involved in this choice. The relatively low predation pressure upon brachycephalids was related to the presence of some defensive strategies of its species. This compounding review can be used as the foundation for future advances in vertebrate predator-prey interactions.
Resumo:
Natural predation first instar larvae of the cotton leafworm (CLW) A. argillacea was studied in cotton fields in Jaboticabal, São Paulo State, Brazil, during 1986. The presence of naturally occurring arthropod predators showed a first instar larvae predation rate of 78.6 and 88.9% after 24 h and 48 h of exposure, respectively. A predator prey ratio of 1 : 1 (1 CLW key predator per 1 prey/plant) maintained a level of no more than 1 CLW small larvae per plant. The most evident arthropod predators in the studied fields were: beetles (Coleoptera: Coccinellidae), ants Pheidole sp. and Conomyrma sp.; Dermaptera Doru lineare (Eschs); Hemiptera Geocoris sp., and Orius insidiosus Say; and the spiders Theridion volubile, Chrysso pulcherrima, Misumenops sp., Chiracanthium sp., and Oxyopes salticus Hentz.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this paper is to study the cropping system as complex one, applying methods from theory of dynamic systems and from the control theory to the mathematical modeling of the biological pest control. The complex system can be described by different mathematical models. Based on three models of the pest control, the various scenarios have been simulated in order to obtain the pest control strategy only through natural enemies' introduction. © 2008 World Scientific Publishing Company.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Our purpose is to show the effects in the predator-prey trajectories due to parameter temporal perturbations and/or inclusion of capacitive terms in the Lotka Volterra Model. An introduction to the Lotka Volterra Model (chapter 2) required a brief review of nonlinear differential equations and stability analysis (chapter 1) , for a better understanding of our work. In the following chapters we display in sequence our results and discussion for the randomic pertubation case (chapter 3); periodic perturbation (chapter 4) and inclusion of capacitive terms (chapter 5). Finally (chapter 6) we synthesize our result
Resumo:
Warm-season grasses are economically important for cattle production in tropical regions and tools to aid in management and research on these forages would be highly beneficial both in research and the industry. This research was conducted to adapt the CROPGRO-Perennial Forage model to simulate growth of the tropical species guineagrass (Panicum maximum Jacq. cv. 'Tanzania') and to describe model adaptation for this species. To develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation, and partitioning during a 17-mo experiment with Tanzania guineagrass in Piracicaba, SP, Brazil. Compared with starting parameters for palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. 'Xaraes'], dormancy effects of the perennial forage model had to be minimized, partitioning to storage tissue or root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield was 6576 kg ha(-1), averaged across 11 regrowth cycles of 35 (summer) or 63 d (winter), with a RMSE of 494 kg ha(-1) (Willmott's index of agreement d = 0.985, simulated/observed ratio = 1.014). The model also gave good predictions against an independent data set, with similar RMSE, ratio, and d. The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of guineagrass and can be used to simulate growth.
Resumo:
Landscape structure and heterogeneity play a potentially important, but little understood role in predator-prey interactions and behaviourally-mediated habitat selection. For example, habitat complexity may either reduce or enhance the efficiency of a predator's efforts to search, track, capture, kill and consume prey. For prey, structural heterogeneity may affect predator detection, avoidance and defense, escape tactics, and the ability to exploit refuges. This study, investigates whether and how vegetation and topographic structure influence the spatial patterns and distribution of moose (Alces alces) mortality due to predation and malnutrition at the local and landscape levels on Isle Royale National Park. 230 locations where wolves (Canis lupus) killed moose during the winters between 2002 and 2010, and 182 moose starvation death sites for the period 1996-2010, were selected from the extensive Isle Royale Wolf-Moose Project carcass database. A variety of LiDAR-derived metrics were generated and used in an algorithm model (Random Forest) to identify, characterize, and classify three-dimensional variables significant to each of the mortality classes. Furthermore, spatial models to predict and assess the likelihood at the landscape scale of moose mortality were developed. This research found that the patterns of moose mortality by predation and malnutrition across the landscape are non-random, have a high degree of spatial variability, and that both mechanisms operate in contexts of comparable physiographic and vegetation structure. Wolf winter hunting locations on Isle Royale are more likely to be a result of its prey habitat selection, although they seem to prioritize the overall areas with higher moose density in the winter. Furthermore, the findings suggest that the distribution of moose mortality by predation is habitat-specific to moose, and not to wolves. In addition, moose sex, age, and health condition also affect mortality site selection, as revealed by subtle differences between sites in vegetation heights, vegetation density, and topography. Vegetation density in particular appears to differentiate mortality locations for distinct classes of moose. The results also emphasize the significance of fine-scale landscape and habitat features when addressing predator-prey interactions. These finer scale findings would be easily missed if analyses were limited to the broader landscape scale alone.
Resumo:
The structure and variability of pelagic food webs along the north and northwestern shelf of the Iberian Peninsula were analysed using natural abundance of nitrogen stable isotopes of plankton and pelagic consumers. Plankton composition was mainly studied in size-fractionated samples, but also the isotopic signatures of three copepod species, as representative of primary consumers, were considered. Several fish species were included as planktivorous consumers, with special attention to sardine (Sardina pilchardus). Finally, top pelagic consumers were represented by the common dolphin (Delphinus delphis). The relationship between trophic position and body size implies large variability in the ratio of predator to prey sizes, likely because widespread omnivory and plankton consumption by relatively large predators. Planktivorous species share a common trophic position, suggesting potential competition for food, and low nitrogen isotope enrichment between prey and consumers suggest nutrient limitation and recycling at the base of the food web. Both experimental and field evidences indicate that the muscle of sardine integrates fish diet over seasonal periods and reflects the composition of plankton from large shelf areas. The low mobility of sardines during periods of low population size is consistent with differential isotopic signatures found in shelf zones characterised by upwelling nutrient inputs.