931 resultados para Rate-equation models
Resumo:
Based on organic carbon accumulation rates, nine time slices of oceanic export paleoproductivity (Pnew) are presented which depict the variability of Pnew on a global scale through the last 30,000 years and document that the basic distribution patterns did not change through glacial and interglacial times. However, the glacial ocean shows an increased contrast of high- versus low-productivity zones. d13C values of near-surface-dwelling planktonic foraminifera Globigerinoides ruber suggest that the same contrast applies to the glacial nutrient inventories of the ambient surface waters, with a significant glacial transfer of PO4 from low- to high-productivity zones. In this way, glacial Pnew increased by a global average of about 2-4 Gt C/yr and led, via an enhanced CaCO3 dissolution and alkalinity in the deep ocean, to a significant extraction of CO2 from the surface water and the atrnosphere.
Resumo:
Kinetics of 1,3-dipolar cycloaddition involving azomethine ylides, generated from thermal [1,2]-prototropy of the corresponding imino ester, employing differential scanning calorimetry (DSC), is surveyed. Glycine and phenylalanine derived imino esters have different behavior. The first one prefers reacting with itself at 75 ºC, rather than with the dipolarophile. However, the α-substituted imino ester gives the cycloadduct at higher temperatures. The thermal dynamic analysis by 1H NMR of the neat reaction mixture of the glycine derivative reveals the presence of signals corresponding to the dipole in very small proportion. The non-isothermal and isothermal DSC curves of the cycloaddition of phenylalaninate and diisobutyl fumarate are obtained from freshly prepared samples. The application of known kinetic models and mathematical multiple non-linear regressions (NLR) allow to determine and to compare Ea, lnA, reaction orders, and reaction enthalpy. Finally a rate equation for each different temperature can be established for this particular thermal cycloaddition.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Bistability arises within a wide range of biological systems from the A phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. in this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Resumo:
This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether (DME) gas adsorptive separation and steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian-Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). Hydrogen is currently receiving increasing interest as an alternative source of clean energy and has high potential applications, including the transportation sector and power generation. Computational fluid dynamic (CFD) modelling has attracted considerable recognition in the engineering sector consequently leading to using it as a tool for process design and optimisation in many industrial processes. In most cases, these processes are difficult or expensive to conduct in lab scale experiments. The CFD provides a cost effective methodology to gain detailed information up to the microscopic level. The main objectives in this project are to: (i) develop a predictive model using ANSYS FLUENT (CFD) commercial code to simulate the flow hydrodynamics, mass transfer, reactions and heat transfer in a large scale dual fluidized bed system for combined gas separation and steam reforming processes (ii) implement a suitable adsorption models in the CFD code, through a user defined function, to predict selective separation of a gas from a mixture (iii) develop a model for dimethyl ether steam reforming (DME-SR) to predict hydrogen production (iv) carry out detailed parametric analysis in order to establish ideal operating conditions for future industrial application. The project has originated from a real industrial case problem in collaboration with the industrial partner Dow Corning (UK) and jointly funded by the Engineering and Physical Research Council (UK) and Dow Corning. The research examined gas separation by adsorption in a bubbling bed, as part of a dual fluidized bed system. The adsorption process was simulated based on the kinetics derived from the experimental data produced as part of a separate PhD project completed under the same fund. The kinetic model was incorporated in FLUENT CFD tool as a pseudo-first order rate equation; some of the parameters for the pseudo-first order kinetics were obtained using MATLAB. The modelling of the DME adsorption in the designed bubbling bed was performed for the first time in this project and highlights the novelty in the investigations. The simulation results were analysed to provide understanding of the flow hydrodynamic, reactor design and optimum operating condition for efficient separation. Bubbling bed validation by estimation of bed expansion and the solid and gas distribution from simulation agreed well with trends seen in the literatures. Parametric analysis on the adsorption process demonstrated that increasing fluidizing velocity reduced adsorption of DME. This is as a result of reduction in the gas residence time which appears to have much effect compared to the solid residence time. The removal efficiency of DME from the bed was found to be more than 88%. Simulation of the DME-SR in FLUENT CFD was conducted using selected kinetics from literature and implemented in the model using an in-house developed user defined function. The validation of the kinetics was achieved by simulating a case to replicate an experimental study of a laboratory scale bubbling bed by Vicente et al [1]. Good agreement was achieved for the validation of the models, which was then applied in the DME-SR in the large scale riser section of the dual fluidized bed system. This is the first study to use the selected DME-SR kinetics in a circulating fluidized bed (CFB) system and for the geometry size proposed for the project. As a result, the simulation produced the first detailed data on the spatial variation and final gas product in such an industrial scale fluidized bed system. The simulation results provided insight in the flow hydrodynamic, reactor design and optimum operating condition. The solid and gas distribution in the CFB was observed to show good agreement with literatures. The parametric analysis showed that the increase in temperature and steam to DME molar ratio increased the production of hydrogen due to the increased DME conversions, whereas the increase in the space velocity has been found to have an adverse effect. Increasing temperature between 200 oC to 350 oC increased DME conversion from 47% to 99% while hydrogen yield increased substantially from 11% to 100%. The CO2 selectivity decreased from 100% to 91% due to the water gas shift reaction favouring CO at higher temperatures. The higher conversions observed as the temperature increased was reflected on the quantity of unreacted DME and methanol concentrations in the product gas, where both decreased to very low values of 0.27 mol% and 0.46 mol% respectively at 350 °C. Increasing the steam to DME molar ratio from 4 to 7.68 increased the DME conversion from 69% to 87%, while the hydrogen yield increased from 40% to 59%. The CO2 selectivity decreased from 100% to 97%. The decrease in the space velocity from 37104 ml/g/h to 15394 ml/g/h increased the DME conversion from 87% to 100% while increasing the hydrogen yield from 59% to 87%. The parametric analysis suggests an operating condition for maximum hydrogen yield is in the region of 300 oC temperatures and Steam/DME molar ratio of 5. The analysis of the industrial sponsor’s case for the given flow and composition of the gas to be treated suggests that 88% of DME can be adsorbed from the bubbling and consequently producing 224.4t/y of hydrogen in the riser section of the dual fluidized bed system. The process also produces 1458.4t/y of CO2 and 127.9t/y of CO as part of the product gas. The developed models and parametric analysis carried out in this study provided essential guideline for future design of DME-SR at industrial level and in particular this work has been of tremendous importance for the industrial collaborator in order to draw conclusions and plan for future potential implementation of the process at an industrial scale.
Resumo:
This paper proposes an integrative framework for the conduct of a more thorough and robust analysis regarding the linkage between Human Resource Management (HRM) and business performance. In order to provide the required basis for the proposed framework, initially, the core aspects of the main HRM models predicting business performance are analysed. The framework proposes both the principle of mediation (i.e. HRM outcomes mediate the relationship between organisational strategies and business performance) and the perspective of simultaneity of decision-making by firms with regard to the consideration of business strategies and HRM policies. In order to empirically test this framework the methodological approach of 'structural equation models' is employed. The empirical research is based on a sample of 178 organisations operating in the Greek manufacturing sector. The paper concludes that both the mediation principle and the simultaneity perspective are supported, emphasising further the positive role of HRM outcomes towards organisational performance.
Resumo:
Neural field models of firing rate activity have had a major impact in helping to develop an understanding of the dynamics seen in brain slice preparations. These models typically take the form of integro-differential equations. Their non-local nature has led to the development of a set of analytical and numerical tools for the study of waves, bumps and patterns, based around natural extensions of those used for local differential equation models. In this paper we present a review of such techniques and show how recent advances have opened the way for future studies of neural fields in both one and two dimensions that can incorporate realistic forms of axo-dendritic interactions and the slow intrinsic currents that underlie bursting behaviour in single neurons.
Resumo:
This study explored the role of donor prototype evaluations (perceptions of the typical organ donor) in organ donation communication decisions using an extended theory of planned behaviour (TPB) model. The model incorporated attitude, subjective norm, perceived behavioural control, moral norm, self-identity, and donor prototype evaluations to predict intentions to record consent on an organ donor register and discuss the organ donation decision with significant others. Participants completed surveys assessing the extended TPB constructs related to registering (n = 359) and discussing (n = 282). Results supported a role for donor prototype evaluations in predicting discussing intentions only. Both extended TPB structural equation models were a good fit to the data, accounting for 74 and 76% of the variance in registering and discussing intentions, respectively. Participants’ self-reported discussing behaviour (but not registering behaviour given low numbers of behavioural performers) was assessed 4 weeks later, with discussing intention as the only significant predictor of behaviour (Nagelkerke R2 = 0.11). These findings highlight the impact of people's perceptions of a typical donor on their decisions to discuss their organ donation preference, assisting our understanding of the factors influencing individuals' communication processes in efforts to bridge the gap between organ supply and demand.
Resumo:
This work investigates the computer modelling of the photochemical formation of smog products such as ozone and aerosol, in a system containing toluene, NOx and water vapour. In particular, the problem of modelling this process in the Commonwealth Scientific and Industrial Research Organization (CSIRO) smog chambers, which utilize outdoor exposure, is addressed. The primary requirement for such modelling is a knowledge of the photolytic rate coefficients. Photolytic rate coefficients of species other than N02 are often related to JNo2 (rate coefficient for the photolysis ofN02) by a simple factor, but for outdoor chambers, this method is prone to error as the diurnal profiles may not be similar in shape. Three methods for the calculation of diurnal JNo2 are investigated. The most suitable method for incorporation into a general model, is found to be one which determines the photolytic rate coefficients for N02, as well as several other species, from actinic flux, absorption cross section and quantum yields. A computer model was developed, based on this method, to calculate in-chamber photolysis rate coefficients for the CSIRO smog chambers, in which ex-chamber rate coefficients are adjusted by accounting for variation in light intensity by transmittance through the Teflon walls, albedo from the chamber floor and radiation attenuation due to clouds. The photochemical formation of secondary aerosol is investigated in a series of toluene-NOx experiments, which were performed in the CSIRO smog chambers. Three stages of aerosol formation, in plots of total particulate volume versus time, are identified: a delay period in which no significant mass of aerosol is formed, a regime of rapid aerosol formation (regime 1) and a second regime of slowed aerosol formation (regime 2). Two models are presented which were developed from the experimental data. One model is empirically based on observations of discrete stages of aerosol formation and readily allows aerosol growth profiles to be calculated. The second model is based on an adaptation of published toluene photooxidation mechanisms and provides some chemical information about the oxidation products. Both models compare favorably against the experimental data. The gross effects of precursor concentrations (toluene, NOx and H20) and ambient conditions (temperature, photolysis rate) on the formation of secondary aerosol are also investigated, primarily using the mechanism model. An increase in [NOx]o results in increased delay time, rate of aerosol formation in regime 1 and volume of aerosol formed in regime 1. This is due to increased formation of dinitrocresol and furanone products. An increase in toluene results in a decrease in the delay time and an increase in the rate of aerosol formation in regime 1, due to enhanced reactivity from the toluene products, such as the radicals from the photolysis of benzaldehyde. Water vapor has very little effect on the formation of aerosol volume, except that rates are slightly increased due to more OH radicals from reaction with 0(1D) from ozone photolysis. Increased temperature results in increased volume of aerosol formed in regime 1 (increased dinitrocresol formation), while increased photolysis rate results in increased rate of aerosol formation in regime 1. Both the rate and volume of aerosol formed in regime 2 are increased by increased temperature or photolysis rate. Both models indicate that the yield of secondary particulates from hydrocarbons (mass concentration aerosol formed/mass concentration hydrocarbon precursor) is proportional to the ratio [NOx]0/[hydrocarbon]0
Resumo:
Vigilance declines when exposed to highly predictable and uneventful tasks. Monotonous tasks provide little cognitive and motor stimulation and contribute to human errors. This paper aims to model and detect vigilance decline in real time through participant’s reaction times during a monotonous task. A lab-based experiment adapting the Sustained Attention to Response Task (SART) is conducted to quantify the effect of monotony on overall performance. Then relevant parameters are used to build a model detecting hypovigilance throughout the experiment. The accuracy of different mathematical models are compared to detect in real-time – minute by minute - the lapses in vigilance during the task. We show that monotonous tasks can lead to an average decline in performance of 45%. Furthermore, vigilance modelling enables to detect vigilance decline through reaction times with an accuracy of 72% and a 29% false alarm rate. Bayesian models are identified as a better model to detect lapses in vigilance as compared to Neural Networks and Generalised Linear Mixed Models. This modelling could be used as a framework to detect vigilance decline of any human performing monotonous tasks.
Resumo:
The numerical solution in one space dimension of advection--reaction--diffusion systems with nonlinear source terms may invoke a high computational cost when the presently available methods are used. Numerous examples of finite volume schemes with high order spatial discretisations together with various techniques for the approximation of the advection term can be found in the literature. Almost all such techniques result in a nonlinear system of equations as a consequence of the finite volume discretisation especially when there are nonlinear source terms in the associated partial differential equation models. This work introduces a new technique that avoids having such nonlinear systems of equations generated by the spatial discretisation process when nonlinear source terms in the model equations can be expanded in positive powers of the dependent function of interest. The basis of this method is a new linearisation technique for the temporal integration of the nonlinear source terms as a supplementation of a more typical finite volume method. The resulting linear system of equations is shown to be both accurate and significantly faster than methods that necessitate the use of solvers for nonlinear system of equations.
Resumo:
We consider a discrete agent-based model on a one-dimensional lattice and a two-dimensional square lattice, where each agent is a dimer occupying two sites. Agents move by vacating one occupied site in favor of a nearest-neighbor site and obey either a strict simple exclusion rule or a weaker constraint that permits partial overlaps between dimers. Using indicator variables and careful probability arguments, a discrete-time master equation for these processes is derived systematically within a mean-field approximation. In the continuum limit, nonlinear diffusion equations that describe the average agent occupancy of the dimer population are obtained. In addition, we show that multiple species of interacting subpopulations give rise to advection-diffusion equations. Averaged discrete simulation data compares very well with the solution to the continuum partial differential equation models. Since many cell types are elongated rather than circular, this work offers insight into population-level behavior of collective cellular motion.
Resumo:
Introduction: Built environment interventions designed to reduce non-communicable diseases and health inequity, complement urban planning agendas focused on creating more ‘liveable’, compact, pedestrian-friendly, less automobile dependent and more socially inclusive cities.However, what constitutes a ‘liveable’ community is not well defined. Moreover, there appears to be a gap between the concept and delivery of ‘liveable’ communities. The recently funded NHMRC Centre of Research Excellence (CRE) in Healthy Liveable Communities established in early 2014, has defined ‘liveability’ from a social determinants of health perspective. Using purpose-designed multilevel longitudinal data sets, it addresses five themes that address key evidence-base gaps for building healthy and liveable communities. The CRE in Healthy Liveable Communities seeks to generate and exchange new knowledge about: 1) measurement of policy-relevant built environment features associated with leading non-communicable disease risk factors (physical activity, obesity) and health outcomes (cardiovascular disease, diabetes) and mental health; 2) causal relationships and thresholds for built environment interventions using data from longitudinal studies and natural experiments; 3) thresholds for built environment interventions; 4) economic benefits of built environment interventions designed to influence health and wellbeing outcomes; and 5) factors, tools, and interventions that facilitate the translation of research into policy and practice. This evidence is critical to inform future policy and practice in health, land use, and transport planning. Moreover, to ensure policy-relevance and facilitate research translation, the CRE in Healthy Liveable Communities builds upon ongoing, and has established new, multi-sector collaborations with national and state policy-makers and practitioners. The symposium will commence with a brief introduction to embed the research within an Australian health and urban planning context, as well as providing an overall outline of the CRE in Healthy Liveable Communities, its structure and team. Next, an overview of the five research themes will be presented. Following these presentations, the Discussant will consider the implications of the research and opportunities for translation and knowledge exchange. Theme 2 will establish whether and to what extent the neighbourhood environment (built and social) is causally related to physical and mental health and associated behaviours and risk factors. In particular, research conducted as part of this theme will use data from large-scale, longitudinal-multilevel studies (HABITAT, RESIDE, AusDiab) to examine relationships that meet causality criteria via statistical methods such as longitudinal mixed-effect and fixed-effect models, multilevel and structural equation models; analyse data on residential preferences to investigate confounding due to neighbourhood self-selection and to use measurement and analysis tools such as propensity score matching and ‘within-person’ change modelling to address confounding; analyse data about individual-level factors that might confound, mediate or modify relationships between the neighbourhood environment and health and well-being (e.g., psychosocial factors, knowledge, perceptions, attitudes, functional status), and; analyse data on both objective neighbourhood characteristics and residents’ perceptions of these objective features to more accurately assess the relative contribution of objective and perceptual factors to outcomes such as health and well-being, physical activity, active transport, obesity, and sedentary behaviour. At the completion of the Theme 2, we will have demonstrated and applied statistical methods appropriate for determining causality and generated evidence about causal relationships between the neighbourhood environment, health, and related outcomes. This will provide planners and policy makers with a more robust (valid and reliable) basis on which to design healthy communities.
Resumo:
Over the past several years, evidence has accumulated showing that the cerebellum plays a significant role in cognitive function. Here we show, in a large genetically informative twin sample (n= 430; aged 16-30. years), that the cerebellum is strongly, and reliably (n=30 rescans), activated during an n-back working memory task, particularly lobules I-IV, VIIa Crus I and II, IX and the vermis. Monozygotic twin correlations for cerebellar activation were generally much larger than dizygotic twin correlations, consistent with genetic influences. Structural equation models showed that up to 65% of the variance in cerebellar activation during working memory is genetic (averaging 34% across significant voxels), most prominently in the lobules VI, and VIIa Crus I, with the remaining variance explained by unique/unshared environmental factors. Heritability estimates for brain activation in the cerebellum agree with those found for working memory activation in the cerebral cortex, even though cerebellar cyto-architecture differs substantially. Phenotypic correlations between BOLD percent signal change in cerebrum and cerebellum were low, and bivariate modeling indicated that genetic influences on the cerebellum are at least partly specific to the cerebellum. Activation on the voxel-level correlated very weakly with cerebellar gray matter volume, suggesting specific genetic influences on the BOLD signal. Heritable signals identified here should facilitate discovery of genetic polymorphisms influencing cerebellar function through genome-wide association studies, to elucidate the genetic liability to brain disorders affecting the cerebellum.
Resumo:
We developed an analysis pipeline enabling population studies of HARDI data, and applied it to map genetic influences on fiber architecture in 90 twin subjects. We applied tensor-driven 3D fluid registration to HARDI, resampling the spherical fiber orientation distribution functions (ODFs) in appropriate Riemannian manifolds, after ODF regularization and sharpening. Fitting structural equation models (SEM) from quantitative genetics, we evaluated genetic influences on the Jensen-Shannon divergence (JSD), a novel measure of fiber spatial coherence, and on the generalized fiber anisotropy (GFA) a measure of fiber integrity. With random-effects regression, we mapped regions where diffusion profiles were highly correlated with subjects' intelligence quotient (IQ). Fiber complexity was predominantly under genetic control, and higher in more highly anisotropic regions; the proportion of genetic versus environmental control varied spatially. Our methods show promise for discovering genes affecting fiber connectivity in the brain.