688 resultados para Rat skeletal muscle
Resumo:
We studied the effects of different protocols of post-disuse rehabilitation on angiogenesis and myosin heavy chain (MHC) content in rat hindlimb muscles after caudal suspension. Thirty female Wistar rats were divided into five groups: (1) Control I, (2) Control II, (3) Suspended, (4) Suspended trained on declined treadmill, and (5) Suspended trained on flat treadmill. Fragments of the soleus and tibialis anterior (TA) muscles were frozen and processed by electrophoresis and immunohistochemistry (CD31 antibody). Hindlimb suspension caused reduction of capillary/fiber (C/F) ratios and contents of MHC type I (MHCI) in the soleus in parallel to increased capillary density. Flat treadmill protocols increased the content of the MHCI isoform. The C/F ratio was increased by concentric training after hypokinesis, but was not modified by eccentric training, which caused a greater reduction of capillary density compared to the other protocols. In the TA muscle, hindlimb suspension caused a non-significant increase in capillary density and C/F ratio with limited changes in MHC. The present data demonstrate that the different training protocols adopted and the functional performance of the muscles analyzed caused specific changes in capillarization and in the content of the various MHC types. (C) 2010 Published by Elsevier GmbH.
Resumo:
Initial experiments were conducted using an in situ rat tibialis anterior (TA) muscle preparation to assess the influence of dietary antioxidants on muscle contractile properties. Adult Sprague-Dawley rats were divided into two dietary groups: 1) control diet (Con) and 2) supplemented with vitamin E (VE) and alpha -lipoic acid (alpha -LA) (Antiox). Antiox rats were fed the Con rats' diet (AIN-93M) with an additional 10,000 IU VE/kg diet and 1.65 g/kg alpha -LA. After an 8-wk feeding period, no differences existed (P > 0.05) between the two dietary groups in maximum specific tension before or after a fatigue protocol or in force production during the fatigue protocol. However, in unfatigued muscle, maximal twitch tension and tetanic force production at stimulation frequencies less than or equal to 40 Hz were less (P < 0.05) in Antiox animals compared with Con. To investigate which antioxidant was responsible for the depressed force production, a second experiment was conducted using an in vitro rat diaphragm preparation. Varying concentrations of VE and dihydrolipoic acid, the reduced form of -LA, were added either individually or in combination to baths containing diaphragm muscle strips. The results from these experiments indicate that high levels of VE depress skeletal muscle force production at low stimulation frequencies.
Resumo:
Rat hindlimb muscles constitutively express the inducible heat shock protein 72 (Hsp70), apparently in proportion to the slow myosin content. Since it remains controversial whether chronic Hsp70 expression reflects the overimposed stress, we investigated Hsp70 cellular distribution in fast muscles of the posterior rat hindlimb after (1) mild exercise training (up to 30 m/min treadmill run for 1 h/day), which induces a remodeling in fast fiber composition, or (2) prolonged exposure to normobaric hypoxia (10%O(2)), which does not affect fiber-type composition. Both conditions increased significantly protein Hsp70 levels in the skeletal muscle. Immunohistochemistry showed the labeling for Hsp70 in subsets of both slow/type 1 and fast/type 2A myofibers of control, sedentary, and normoxic rats. Endurance training increased about threefold the percentage of Hsp70-positive myofibers (P < 0.001), and changed the distribution of Hsp70 immunoreactivity, which involved a larger subset of both type 2A and intermediate type 2A/2X myofibers (P < 0.001) and vascular smooth muscle cells. Hypoxia induced Hsp70 immunoreactivity in smooth muscle cells of veins and did not increase the percentage of Hsp70-positive myofibers; however, sustained exposure to hypoxia affected the distribution of Hsp70 immunoreactivity, which appeared detectable in a very small subset of type 2A fibers, whereas it concentrated in type 1 myofibers (P < 0.05) together with the labeling for heme-oxygenase isoform 1, a marker of oxidative stress. Therefore, the chronic induction of Hsp70 expression in rat skeletal muscles is not obligatory related to the slow fiber phenotype but reveals the occurrence of a stress response.
Resumo:
Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat.
Resumo:
The aim of the present study was to evaluate the effect of joint immobilization on morphometric parameters and glycogen content of soleus muscle treated with clenbuterol. Male Wistar (3-4 months old) rats were divided into 4 groups (N = 6 for each group): control, clenbuterol, immobilized, and immobilized treated with clenbuterol. Immobilization was performed with acrylic resin orthoses and 10 µg/kg body weight clenbuterol was administered subcutaneously for 7 days. The following parameters were measured the next day on soleus muscle: weight, glycogen content, cross-sectional area, and connective tissue content. The clenbuterol group showed an increase in glycogen (81.6%, 0.38 ± 0.09 vs 0.69 ± 0.06 mg/100 g; P < 0.05) without alteration in weight, cross-sectional area or connective tissue compared with the control group. The immobilized group showed a reduction in muscle weight (34.2%, 123.5 ± 5.3 vs 81.3 ± 4.6 mg; P < 0.05), glycogen content (31.6%, 0.38 ± 0.09 vs 0.26 ± 0.05 mg/100 mg; P < 0.05) and cross-sectional area (44.1%, 2574.9 ± 560.2 vs 1438.1 ± 352.2 µm²; P < 0.05) and an increase in connective tissue (216.5%, 8.82 ± 3.55 vs 27.92 ± 5.36%; P < 0.05). However, the immobilized + clenbuterol group showed an increase in weight (15.9%; 81.3 ± 4.6 vs 94.2 ± 4.3 mg; P < 0.05), glycogen content (92.3%, 0.26 ± 0.05 vs 0.50 ± 0.17 mg/100 mg; P < 0.05), and cross-sectional area (19.9%, 1438.1 ± 352.2 vs 1724.8 ± 365.5 µm²; P < 0.05) and a reduction in connective tissue (52.2%, 27.92 ± 5.36 vs 13.34 ± 6.86%; P < 0.05). Statistical analysis was performed using Kolmogorov-Smirnov and homoscedasticity tests. For the muscle weight and muscle glycogen content, two-way ANOVA and the Tukey test were used. For the cross-sectional area and connective tissue content, Kruskal-Wallis and Tukey tests were used. This study emphasizes the importance of anabolic pharmacological protection during immobilization to minimize skeletal muscle alterations resulting from disuse.
Resumo:
University, 2006 Dr. Sandra J. Peters Pyruvate dehydrogenase (PDH) catalyses the decarboxylation of pyruvate, to form acetyl-CoA. PDH activity is down-regulated by intrinsic PDH kinases (predominantly PDK2 and PDK4 isoforms), but the understanding of the PDK isoform distribution and adaptation to nutritional stresses has been restricted to mixed mitochondrial populations, and not delineated between subsarcolemmal (SS) and intermyofibrillar (IMF) subpopulations. SS and IMF mitochondria exhibit distinct morphological and biochemical properties; however the functional differences are not well understood. This study investigated the effect of fed (FED) versus 48 h total foodrestriction (FR) on rat red gastrocnemius muscle PDK2 and 4 isoform content in SS and IMF mitochondria. PDK4 content was ~3-5 fold higher in SS mitochondria compared to IMF (p=0.001), and increased with FR -3-4- fold in both subpopulations (p<0.001). PDK2 was -2.5-4 fold higher in SS mitochondria compared to IMF (p=0.001), but PDK2 was unaltered with FR. Citrate synthase activity (|imol/min/mg mitochondrial protein) was not different between either subpopulation. As well there were no significant differences between mitochondrial subpopulations in PDH complex components in both fed and FR states. These results demonstrate that there is a markedly higher content of both PDK isofonns in SS compared to IMF mitochondria. Although PDK2 does not increase in either subpopulation in response to FR, PDK4 increases to a similar extent in both SS and IMF after 48 h food-restriction.
Resumo:
Membranes are dynamic structures that affect cell structure and function. Compositional changes ofmembranes have been shown with the application of a perturbation; however these are limited to whole tissue analysis. The purpose of this thesis was to compare the phospholipid (PL) fatty acid (FA) composition of rat whole muscle (Wm) to 1) purified and non-purified subsarcolemmal (SS) mitochondria in soleus, plantaris, and red gastrocnemius, and 2) sarcolemma, transverse-tubules, SS and intermyofibrillar (IMF) mitochondria fix)m whole hindlimb. The major findings were that 1) contamination significantly altered the PL FA composition of the SS mitochondrial membrane fraction, 2) Wm and SS mitochondria compositions differed between muscle types, and 3) Wm did not accurately reflect the PL FA composition of any isolated subcellular membranes, with each being unique from each other. As such, the relevancy of the trends reported in the literature of the effects of perturbations on Wm may be limited.
Resumo:
Extracellular hyper-osmotic (HYPER) stress increases glucose uptake to defend cell volume, when compared to iso-osmotic (ISO) conditions in skeletal muscle. The purpose of this study was to determine a time course for changes in common signaling proteins involved in glucose uptake during acute hyper-osmotic stress in isolated mammalian skeletal muscle. Rat extensor digitorum longus (EDL) muscles were excised and incubated in a media formulated to mimic ISO (290 ± 10 mmol/kg) or HYPER (400 ± 10 mmol/kg) extracellular condition (Sigma Media-199). Signaling mechanisms were investigated by determining the phosphorylation states of Akt, AMPK, AS160, cPKC and ERK after 30, 45 and 60 minutes of incubation. AS160 was found to be significantly more phosphorylated in HYPER conditions compared to ISO after 30 minutes (p<0.01). It is speculated that AS160 phosphorylation increases glucose transporter 4 (GLUT4) content at the cell surface thereby facilitating an increase in glucose uptake under hyper-osmotic stress.
Resumo:
The purpose of this study was to examine the effect of hyper-osmotic stress on protein turnover in skeletal muscle tissue using an established in-vitro model. Rat EDL muscles were incubated in either hyper-osmotic (400 ± 10 Osm) or isoosmotic (290 ± 10 Osm) custom-modified media (Gibco). L-[14C]-U-phenylalanine (n=8) and cycloheximide (n=8) were used to quantify protein synthesis and degradation, respectively. Western blotting analyses was performed to determine the activation of protein synthesis and degradation pathways. During hyperosmotic stress, protein degradation increased (p<0.05), while protein synthesis was decreased (p<0.05) as compared to the iso-osmotic condition. The decline in protein synthesis was accompanied by a decrease (p<0.05) in p70s6 kinase phosphorylation, while the increase in protein degradation was associated with an increase (p<0.05) in autolyzed calpain. Therefore, hyper-osmotic extracellular stress results in an intracellular catabolic environment in mammalian skeletal muscle tissue.
Resumo:
Pyruvate dehydrogenase phosphatase (PDP) regulates carbohydrate oxidation through the pyruvate dehydrogenase (PDH) complex. PDP activates PDH, enabling increased carbohydrate flux towards oxidative energy production. In culture myoblasts, both PDP1 and PDP2 undergo covalent activation in response to insulin–stimulation by protein kinase C delta (PKCδ). Our objective was to examine the effect of insulin on PDP phosphorylation and PDH activation in skeletal muscle. Intact rat extensor digitorum longus muscles were incubated (oxygenated at 25°C, 1g of tension) for 30min in basal or insulin–stimulated (10 mU/mL) media. PDH activity increased 58% following stimulation, (p=0.057, n=11). Serine phosphorylation of PDP1 (p=0.047) and PDP2 (p=0.006) increased by 29% and 48%, respectively (n=8), and mitochondrial PKCδ protein content was enriched by 45% in response to stimulation (p=0.0009, n=8). These data suggest that the insulin–stimulated increase in PDH activity in whole tissue is mediated through mitochondrial migration of PKCδ and subsequent PDP phosphorylation.
Resumo:
Aim: Changes in skeletal muscle morphology and metabolism are associated with limited functional capacity in heart failure, which can be attenuated by neuromuscular electrical stimulation (ES). The purpose of the present study was to analyse the effects of ES upon GLUT-4 protein content, fibre structure and vessel density of the skeletal muscle in a rat model of HF subsequent to myocardial infarction. Methods: Forty-four male Wistar rats were assigned to one of four groups: sham (S), sham submitted to ES (S+ES), heart failure (HF) and heart failure submitted to ES (HF+ES). The rats in the ES groups were submitted to ES of the left leg during 20 days (2.5 kHz, once a day, 30 min, duty cycle 50%- 15 s contraction/15 s rest). After this period, the left tibialis anterior muscle was collected from all the rats for analysis. Results: HF+ES rats showed lower values of lung congestion when compared with HF rats (P = 0.0001). Although muscle weight was lower in HF rats than in the S group, thus indicating hypotrophy, 20 days of ES led to their recovery (P < 0.0001). In both groups submitted to ES, there was an increase in muscle vessel density (P < 0.04). Additionally, heart failure determined a 49% reduction in GLUT-4 protein content (P < 0.03), which was recovered by ES (P < 0.01). Conclusion: In heart failure, ES improves morphological changes and raises GLUT-4 content in skeletal muscle.
Resumo:
Previous studies have shown that lipids are transferred from lymphocytes (Ly) to different cell types including macrophages. enterocytes, and pancreatic beta cells in co-culture This study investigated whether [(14)C]-labeled fatty acids (FA) can be transferred from Ly to skeletal muscle (SM), and the effects of exercise on such phenomenon Ly obtained from exercised (EX) and control (C) male Wistar rats were preloaded with the [(14)C]-labeled free FA palmitic (PA), oleic (OA), linoleic (LA), or arachidonic (AA) Radioactively loaded Ly were then co-cultured with SM from the same Ly donor animals Substantial amounts of FA were transferred to SM being the profile PA = OA > AA > LA to the C group. and PA > OA > LA > AA to the EX group These FA were incorporated predominantly as phospholipids (PA = 66 75%: OA = 63 09%, LA = 43 86%, AA - 47 40%) in the C group and (PA = 63 99% OA = 52 72%, LA = 55 99%, AA = 63 40%) in the EX group Also in this group, the remaining radioactivity from AA, LA, and OA acids was mainly incorpoiated in structural and energetic lipids These results support the hypothesis that Ly are able to export lipids to SM in co-culture Furthermore. exercise modulates the lipid transference profile, and its incorporation on SM The overall significance of this phenomenon in vivo remains to be elucidated. Copyright (C) 2010 John Wiley & Sons, Ltd
Resumo:
The protective effect of short-term creatine supplementation (CrS) upon markers of strenuous contractile activity-induced damage in human and rat skeletal muscles was investigated. Eight Ironman triathletes were randomized into the placebo (Pl; n = 4) and creatine-supplemented (CrS; n = 4) groups. Five days prior to the Ironman competition, the CrS group received creatine monohydrate (20 g day(-1)) plus maltodextrin (50 g) divided in two equal doses. The Pl group received maltodextrin (50 g day(-1)) only. The effect of CrS (5 g day(-1)/kg body weight for 5 days) was also evaluated in a protocol of strenuous contractile activity induced by electrical stimulation in rats. Blood samples were collected before and 36 and 60 h after the competition and were used to determine plasma activities of creatine kinase (CK), lactate dehydrogenase (LDH), aldolase (ALD), glutamic oxaloacetic acid transaminase (GOT), glutamic pyruvic acid transaminase (GPT), and C-reactive protein (CRP) level. In rats, plasma activities of CK and LDH, muscle vascular permeability (MVP) using Evans blue dye, muscle force and fatigue were evaluated. Activities of CK, ALD, LDH, GOT, GTP, and levels of CRP were increased in the Pl group after the competition as compared to basal values. CrS decreased plasma activities of CK, LDH, and ALD, and prevented the rise of GOT and GPT plasma activities. In rats, CrS delayed the fatigue, preserved the force, and prevented the rise of LDH and CK plasma activities and MVP in the gastrocnemius muscle. CrS presented a protective effect on muscle injury induced by strenuous contractile activities.
Resumo:
We wanted to test if pre-exercise muscle irradiation with 904 nm laser affects the development of fatigue, blood lactate levels and creatine kinase (CK) activity in a rat model with tetanic contractions. Thirty male Wistar rats were divided into five groups receiving either one of four different laser doses (0.1, 0.3, 1.0 and 3.0 J) or a no-treatment control group. Laser irradiation was performed immediately before the first contraction for treated groups. Electrical stimulation was used to induce six tetanic tibial anterior muscle contractions with 10 min intervals between them. Contractions were stopped when the muscle force fell to 50% of the peak value for each contraction; blood samples were taken before the first and immediately after the sixth contraction. The relative peak forces for the sixth contraction were significantly better (P < 0.05) in the two laser groups irradiated with highest doses [151.27% (SD +/- A 18.82) for 1.0 J, 144.84% (SD +/- A 34.47) for 3.0 J and 82.25% (SD +/- A 11.69) for the control group]. Similar significant (P < 0.05) increases in mean performed work during the sixth contraction for the 1.0 and 3.0 J groups were also observed. Blood lactate levels were significantly lower (P < 0.05) than the control group in all irradiated groups. All irradiated groups except the 3.0 J group had significantly lower post-exercise CK activity than the control group. We conclude that pre-exercise irradiation with a laser dose of 1.0 J and 904 nm wavelength significantly delays muscle fatigue and decreases post-exercise blood lactate and CK in this rat model.
Resumo:
The eukaryotic translation initiation factor 5A (eIF5A) contains a special amino acid residue named hypusine that is required for its activity, being produced by a post-translational modification using spermidine as substrate. Stem cells from rat skeletal muscles (satellite cells) were submitted to differentiation and an increase of eIF5A gene expression was observed. Higher content of eIF5A protein was found in satellite cells on differentiation in comparison to non-differentiated satellite cells and skeletal muscle. The treatment with NI-guanyl- 1,7-diaminoheptane (GC7), a hypusination inhibitor, reversibly abolished the differentiation process. In association with the differentiation blockage, an increase of glucose consumption and lactate production and a decrease of glucose and palmitic acid oxidation were observed. A reduction in cell proliferation and protein synthesis was also observed. L-Arginine, a spermidine precursor and partial suppressor of muscle dystrophic phenotype, partially abolished the GC7 inhibitory effect on satellite cell differentiation. These results reveal a new physiological role for eIF5A and contribute to elucidate the molecular mechanisms involved in muscle regeneration.