989 resultados para Rat Dahl salt-sensitive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le but de cette thèse est premièrement d’évaluer l’effet du vieillissement sur les fonctions psychomotrices des souches de souris sélectionnées génétiquement en fonction de leur tension artérielle (TA); deuxièmement, de localiser les déterminants génétiques des phénotypes psychophysiologiques à partir de souches recombinantes congéniques (RCS). Ces travaux ont mené à la publication de 4 articles. Le premier article décrit l’évaluation des fonctions psychomotrices des souches avec une tension artérielle élevée (HBP), basse (LBP) et normale (NBP). La performance aux épreuves d’exploration, d’habiletés motrices et d’apprentissage spatial, a été mesurée sur deux cohortes âgées respectivement de 12 mois et de trois mois. Indépendamment de l’âge, les HBPs sont hyperactives dans l’open-field (OF), mais pas dans le test d’exploration de trous. Inversement, les LBP explorent moins d’espaces que les NBP et, à trois mois seulement, sont hypoactives dans l’OF. Par ailleurs, les HBPs et les LBP présentent des déficits précoces de coordination motrice et des fonctions visuo-motrices. Le second article concerne l’évaluation longitudinale de la coordination motrice, de l’anxiété et de l’apprentissage spatial des souches HBP, LBP et NBP, à l’âge de deux mois et de 12 mois. Le vieillissement accentue l’hyperactivité des HBPs dans l’OF. Par contre, l’hypoactivité des souris LBP est détectable seulement à l’âge de deux mois. Indépendamment de l’âge, les souris HBP et LBP montrent une perception réduite du danger dans l’épreuve d’anxiété et des dysfonctions visuo-motrices au labyrinthe aquatique. Enfin, des déficits précoces de coordination motrice se manifestent seulement chez les HBPs. Il reste à déterminer si les déficits observés sont liés à des déterminants génétiques indépendants ou secondaires aux altérations de la tension artérielle. Le troisième article présente la comparaison entre les souches consanguines A/J et C57Bl/6J (B6) aux épreuves de l’OF, de la planche à trous, du labyrinthe aquatique et du cintre (coordination motrice). Les B6 explore d’avantage l’OF et la planche à trous. Les B6 sont moins rapides sur le cintre, mais supérieurs aux A/J dans le labyrinthe aquatique, avec une plate-forme invisible ou visible. Ces résultats démontrent l’implication de déterminants génétiques. Cette thèse se termine par un quatrième article sur la localisation des déterminants génétiques de la susceptibilité au stress dans les RCS, dérivées de A/J et B6, et présentant un agencement spécifique de 12.5% du génome. La réactivité émotionnelle est évaluée dans l’OF et le plus-maze; la réponse de stress est mesurée par radio télémétrie de la température interne pendant le stress d’immobilisation (SI) sous diète régulière et riche en sel; l’excrétion des électrolytes urinaires est dosée après 24 heures de diète salée. Les loci les plus significatifs sont situés dans les régions suivantes: de l’émotionalité dans l’OF (Emo1) sur le chr. 1 (LOD=4.6) correspondant à la région homologue impliquée dans la cohorte d’hypertension familiale du Saguenay; de la dopa décarboxylase (ddc) sur le chr. 11 pour l’émergence du plus-maze (LOD=4.7); de la protéine liant l’endotoxine (lbp) sur le chr. 2 pour l’hypothermie initiale en réponse au SI (LOD=4); et de HSP90 sur le chr. 12 pour l’excrétion de Ca++ (LOD=4.6). Des banques de données sont ensuite interrogées pour recenser les polymorphismes des régions régulatrices ou codantes des gènes candidats chez les souches ancestrales A/J et B6, dont les séquences sont disponibles pour le génome entier. Des utilitaires web permettent de dévoiler les changements dans la structure secondaire de l’ARNm, l’interférence avec des microARN ou avec d’autres motifs de liaison. Plusieurs SNPs fonctionnels ont été identifiés pour le QTL du chr. 1, particulièrement dans les éléments de régulation; ceux-ci impliquant des gènes reliés avec les réponses inflammatoire/immunitaire ou avec le système cardiovasculaire. La quantification par la PCR confirme une régulation à la baisse d’atp1a2 dans le cœur et le cerveau des souches susceptibles à l’anxiété. Ces résultats confirment l’intrication des altérations de la susceptibilité au stress et de la régulation de la TA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intra- and intermolecular rates of degradation of cephaclor were determined with and without hexadecyltrimethylammonium bromide (CTABr). Micellar-derived spectral shifts were used to measure the association of the ionic forms as well as to determine the effect of CTABr on the apparent acid dissociation constant of the antibiotic. The rate of degradation of cephaclor increased with detergent and was salt sensitive. Micellar effects were analyzed quantitatively within the frame-work of the speudophase ion exchange model. All experimental data were fitted to this model which was used to predict the combined effects of pH and detergent concentration. Micelles increased the rate of OH- attack on cephaclor; most of the effect was due to the concentration of reagents in the micellar pseudophase. The intramolecular degradation was catalyzed 25-fold by micelles, and a working hypothesis to rationalize this effect is proposed. The results demonstrate that quantitative analysis can be utilized to assess and predict effects of detergents on drug stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research was carried out to investigate of main elements of salt stress response in two strawberry cultivars, Elsanta and Elsinore. Plants were grown under 0, 10, 20 and 40 mM NaCl for 80 days. Salinity dramatically affected growth in both cultivars, although Elsinore appeared to be more impaired than Elsanta. Moreover a significant reduction of leaf photosynthesis, evaporation, and stomatal conductance was recorded 24 hrs after the stress was applied in both cultivars, whereas physiological functions were differentially restored after acclimation. However, cv. Elsanta had more efficient leaf gas exchange and water status than cv. Elsinore. In general, Fruit yield reduced upon salinization, wheares fruit quality concerning fruit taste, aroma, appearance, total soluble solids and titratable acidity, did not change but rather was enhanced under moderate salinity. On the other hand fruit quality was impaired at severe salt stress. Fruit antioxidant content and antioxidant capacity were enhanced significantly by increasing salt concentration in both cultivars. The oxidative effects of the stress were defined by the measures of some enzymatic activities and lipid peroxidation. Consistently, an increase in superoxide dismutase (SOD), catalase (CAT), peroxide dismutase (POD) enzymes and higher content of proline and soluble proteins were observed in cv. Elsinore than in cv. Elsanta. The increase coincided with a decrease in lipid peroxidation. The research confirmed that although strawberry cultivars were sensitive to salinity, difference between cultivars exist; The experiment revealed that cv. Elsanta could stand severe salt stress, which was lethal to cv. Elsinore. The parameters measured in the previous experiment were proposed as early screening tools for the salt stress response in nine strawberry genotypes. The results showed that, wheares Elsanta and Elsinore cultivars had a lower dry weight reduction at 40 mM NaCl among cultivars, Naiad, Kamila, and Camarosa were the least salt-sensitive cultivars among the screened.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human β-defensins (HBDs) are antimicrobial peptides that may play a role in mucosal defense. Diminished activity of these peptides has been implicated in the pathogenesis of cystic fibrosis (CF) lung disease. We show that HBD-1 and HBD-2 mRNAs are expressed in excised surface and submucosal gland epithelia from non-CF and CF patients. The pro-inflammatory cytokine interleukin-1β stimulated the expression of HBD-2 but not HBD-1 mRNA and peptide in primary cultures of airway epithelia. HBD-1 was found in bronchoalveolar lavage (BAL) fluid from normal volunteers, CF patients, and patients with inflammatory lung diseases, whereas HBD-2 was detected in BAL fluid from patients with CF or inflammatory lung diseases, but not in normal volunteers. Both HBD-1 and HBD-2 were found in BAL fluid in concentrations of several ng/ml, and both recombinant peptides showed salt-sensitive bactericidal activity. These data suggest that in the lung HBD-2 expression is induced by inflammation, whereas HBD-1 may serve as a defense in the absence of inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epithelial amiloride-sensitive sodium channel (ENaC) controls transepithelial Na+ movement in Na+-transporting epithelia and is associated with Liddle syndrome, an autosomal dominant form of salt-sensitive hypertension. Detailed analysis of ENaC channel properties and the functional consequences of mutations causing Liddle syndrome has been, so far, limited by lack of a method allowing specific and quantitative detection of cell-surface-expressed ENaC. We have developed a quantitative assay based on the binding of 125I-labeled M2 anti-FLAG monoclonal antibody (M2Ab*) directed against a FLAG reporter epitope introduced in the extracellular loop of each of the α, β, and γ ENaC subunits. Insertion of the FLAG epitope into ENaC sequences did not change its functional and pharmacological properties. The binding specificity and affinity (Kd = 3 nM) allowed us to correlate in individual Xenopus oocytes the macroscopic amiloride-sensitive sodium current (INa) with the number of ENaC wild-type and mutant subunits expressed at the cell surface. These experiments demonstrate that: (i) only heteromultimeric channels made of α, β, and γ ENaC subunits are maximally and efficiently expressed at the cell surface; (ii) the overall ENaC open probability is one order of magnitude lower than previously observed in single-channel recordings; (iii) the mutation causing Liddle syndrome (β R564stop) enhances channel activity by two mechanisms, i.e., by increasing ENaC cell surface expression and by changing channel open probability. This quantitative approach provides new insights on the molecular mechanisms underlying one form of salt-sensitive hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cadmium (Cd) is a metal toxin of continuing worldwide concern. Daily intake of Cd, albeit in small quantities, is associated with a number of adverse health effects which are attributable to distinct pathological changes in a variety of tissues and organs. In the present review, we focus on its renal tubular effects in people who have been exposed environmentally to Cd at levels below the provisional tolerable intake level set for the toxin. We highlight the data linking such low-level Cd intake with tubular injury, altered abundance of cytochromes P450 (CYPs) in the kidney and an expression of a hypertensive phenotype. We provide updated knowledge on renal and vascular effects of the eicosanoids 20-hydroxyeicosatetraenoic acid (20-HETE) and eicosatrienoic acids (EETs), which are biologically active metabolites from arachidonate metabolism mediated by certain CYPs in the kidney. We note the ability of Cd to elicit oxidative stress and to alter metal homeostasis notably of zinc which may lead to augmentation of the defense mechanisms involving induction of the antioxidant enzyme heme oxygenase-1 (HO-1) and the metal binding protein metallothionein (MT) in the kidney. We hypothesize that renal Cd accumulation triggers the host responses mediated by HO-I and MT in an attempt to protect the kidney against injurious oxidative stress and to resist a rise in blood pressure levels. This hypothesis predicts that individuals with less active HO-1 (caused by the HO-1 genetic polymorphisms) are more likely to have renal injury and express a hypertensive phenotype following chronic ingestion of low-level Cd, compared with those having more active HO-1. Future analytical and molecular epidemiologic research should pave the way to the utility of induction of heme oxygenases together with dietary antioxidants in reducing the risk of kidney injury and hypertension in susceptible people.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The vasoconstricting peptide Endothelin-1 (ET-1) has been associated with atherosclerotic cardiovascular disease, AAA, hypertension and hypercholesterolemia. It is known to stimulate quiescent vascular smooth muscle cells (VSMC) into the growth cycle and has been linked to intimal thickening following endothelial injury and is associated with vessel wall remodelling in salt-sensitive hypertension models. Enhanced ET-1 expression has been reported in the internal mammary artery (IMA) and was markedly higher in patients undergoing cardiac bypass surgery who were diabetic and /or hypercholesterolemic. Aims: To firstly review the histopathology of the IMA and secondly, determine the relationship between ET-1 expression in this vessel and mitogenic activity in the medial VSMC. Methods: Vessel tissue collected at the time of CABG surgery was formalin-fixed and paraffin-embedded for histological investigation. Cross sections of the left distal IMAwere stained with Alcian Blue/Verhoeff’s van Gieson to assess medial degeneration and identify the elastic lamellae and picrosirius red to determine the collagen content (specifically type I and type III). Immunohistochemistry staining was used to assess VSMC growth (PCNA label), tissue ET-1 expression, VSMC (SMCa-actin) area and macrophage/monocyte (anti-CD68) infiltration. Quantitative analysis was performed to measure the VSMC area in relation to ET-1 staining. Results: Fifty-five IMA specimens from the CABG patients (10F; 45M; mean age 65 years) were collected for this study. Fourteen donor IMAspecimens were used as controls (7F; 7M; mean age 45 years). Significant medial hypertrophy, VSMC disorganisation and elastic lamellae destruction was detected in the CABG IMA. The amount of Alcian blue staining in the CABG IMA was almost double that of the control (31.85+/14.52% Vs 17.10+/9.96%, P= .0006). Total collagen and type I collagen content was significantly increased compared with controls (65.8+/18.3% Vs 33.7 + / 13.7%, P= .07), (14.2 + /10.0% Vs 4.8 + /2.8%, P= .01), respectively. Tissue ET-1 and PCNA labelling were also significantly elevated the CABG IMA specimens relative to the controls (69.99 + /18.74%Vs 23.33 + /20.53%, P= .0001, and 37.29 + /12.88% Vs 11.06 + /8.18, P= .0001), respectively. There was mild presence of macrophages and monocytes in both CABG and control tissue. Conclusions: The IMA from CABG patients has elevated levels of type I collagen in the extracellular matrix indicative of fibrosis and was coupled with deleterious structural remodelling. Abnormally high levels of ET-1 were measured in the medial SMC layer and was associated with VSMC growth but not related to any chronic inflammatory response within the vessel wall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salinity acts to inhibit plant access to soil water by increasing the osmotic strength of the soil solution. As the soil dries, the soil solution becomes increasingly concentrated, further limiting plant access to soil water. An experiment was conducted to examine the effect of salt on plant available water in a heavy clay soil, using a relatively salt tolerant species, wheat ‘Kennedy’, and a more salt sensitive species, chickpea ‘Jimbour’. Sodium chloride was applied to Red Ferrosol at 10 rates from 0 to 3 g/kg. Plants were initially maintained at field capacity. After 3 weeks, plants had become established and watering was ceased. The plants then grew using the water stored in the soil. Once permanent wilting point was reached plants were harvested, and soil water content was measured. The results showed that without salt stress, wheat and chickpea extracted approximately the same amount of water. However, as the salt concentration increased, the ability of chickpea to extract water was severely impaired, while wheat’s ability to extract water was not affected over the range of concentrations examined. Growth of both wheat and chickpea was reduced even from low salt concentrations. Possible explanations for this are that the effect on growth is due to Cl- toxicity and that this occurs at lower concentrations than the osmotic effect of salinity, or that the metabolic demands of maintaining plant water balance and extracting soil water under saline conditions result in reduced growth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pires-Oliveira M, Maragno AL, Parreiras-E-Silva LT, Chiavegatti T, Gomes MD, Godinho RO. Testosterone represses ubiquitin ligases atrogin-1 and Murf-1 expression in an androgen-sensitive rat skeletal muscle in vivo. J Appl Physiol 108: 266-273, 2010. First published November 19, 2009; doi:10.1152/japplphysiol.00490.2009.-Skeletal muscle atrophy induced by denervation and metabolic diseases has been associated with increased ubiquitin ligase expression. In the present study, we evaluate the influence of androgens on muscle ubiquitin ligases atrogin-1/MAFbx/FBXO32 and Murf-1/Trim63 expression and its correlation with maintenance of muscle mass by using the testosterone-dependent fast-twitch levator ani muscle (LA) from normal or castrated adult male Wistar rats. Gene expression was determined by qRT-PCR and/or immunoblotting. Castration induced progressive loss of LA mass (30% of control, 90 days) and an exponential decrease of LA cytoplasm-to-nucleus ratio (nuclear domain; 22% of control after 60 days). Testosterone deprivation induced a 31-fold increase in LA atrogin-1 mRNA and an 18-fold increase in Murf-1 mRNA detected after 2 and 7 days of castration, respectively. Acute (24 h) testosterone administration fully repressed atrogin-1 and Murf-1 mRNA expression to control levels. Atrogin-1 protein was also increased by castration up to 170% after 30 days. Testosterone administration for 7 days restored atrogin-1 protein to control levels. In addition to the well known stimulus of protein synthesis, our results show that testosterone maintains muscle mass by repressing ubiquitin ligases, indicating that inhibition of ubiquitin-proteasome catabolic system is critical for trophic action of androgens in skeletal muscle. Besides, since neither castration nor androgen treatment had any effect on weight or ubiquitin ligases mRNA levels of extensor digitorum longus muscle, a fast-twitch muscle with low androgen sensitivity, our study shows that perineal muscle LA is a suitable in vivo model to evaluate regulation of muscle proteolysis, closely resembling human muscle responsiveness to androgens.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. An ATP-sensitive K+ (K-ATP) conductance has been identified using the perforated patch recording configuration in a population (52%) of dissociated neurones from adult rat intracardiac ganglia. The presence of the sulphonylurea receptor in approximately half of the intracardiac neurones was confirmed by labelling with fluorescent glibenclamide-BODIPY. 2. Under current clamp conditions in physiological solutions, leveromakalim (10 muM) evoked a hyperpolarization, which was inhibited by the sulphonylurea drugs glibenclamide and tolbutamide. 3. Under voltage clamp conditions in symmetrical (140 mM) K+ solutions, hath application of levcromakalim evoked an inward current with a density of similar to8 pA pF(-1) at -50 mV and a slope conductance of similar to9 nS, which reversed close to the potassium equilibrium potential (E-K). Cell dialysis with an ATP-free intracellular solution also evoked an inward current, which was inhibited by tolbutamide. 4. Bath application of either glibenclamide (10 muM) or tolbutamide (100 muM) depolarized adult intracardiac neurones by 3-5 mV, suggesting that a K-ATP conductance is activated under resting conditions and contributes to the resting membrane potential. 5. Activation of a membrane current by levcromakalim leas concentration dependent, with an EC50 of 1.6 muM. Inhibition of the levcromakalim-activated current by glibenclamide leas also concentration dependent, with an IC50 of 55 nM. 6. Metabolic inhibition with 2,4-dinitrophenol and iodoacetic acid or superfusion with hypoxic solution (P-O2 similar to 16 mmHg) also activated a membrane current. These currents exhibited similar I-P characteristics to the levcroinakalim-induced current and were inhibited by glibenclamide. 7. Activation of K-ATP channels in mammalian intracardiac neurones may contribute to changes in neural regulation of the mature heart and. cardiac function during ischaemia-reperfusion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membrane-bound P2 purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and -smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca2+]i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y4 agonist, MRS4062, caused a fast desensitizing [Ca2+]i rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca2+ in the extracellular fluid. The biphasic [Ca2+]i response to UTP was attenuated respectively by P2Y4 blockers, like reactive blue-2 and suramin, and by the P2Y11 antagonist, NF340. UTP and the P2Y2 receptor agonist MRS2768 increased, whereas the selective P2Y11 agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y11receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y2, P2Y4 and P2Y11 receptors. Data indicate that besides P2Y4 and P2Y2 receptors which are responsible for UTP-induced [Ca2+]i transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y11 receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Substantial evidence supports a role for myocyte enhancer factor 2 (MEF2)-mediated transcription in neuronal survival, differentiation and synaptic function. In developing neurons, it has been shown that MEF2-dependent transcription is regulated by neurotrophins. Despite these observations, little is known about the cellular mechanisms by which neurotrophins activate MEF2 transcriptional activity. In this study, we examined the role of salt-inducible kinase 1 (SIK1), a member of the AMP-activated protein kinase (AMPK) family, in the regulation of MEF2-mediated transcription by the neurotrophin brain-derived neurotrophic factor (BDNF). We show that BDNF increases the expression of SIK1 in primary cultures of rat cortical neurons through the extracellular signal-regulated kinase 1/2 (ERK1/2)-signaling pathway. In addition to inducing SIK1 expression, BDNF triggers the phosphorylation of SIK1 at Thr182 and its translocation from the cytoplasm to the nucleus of cortical neurons. The effects of BDNF on the expression, phosphorylation and, translocation of SIK1 are followed by the phosphorylation and nuclear export of histone deacetylase 5 (HDAC5). Blockade of SIK activity with a low concentration of staurosporine abolished BDNF-induced phosphorylation and nuclear export of HDAC5 in cortical neurons. Importantly, stimulation of HDAC5 phosphorylation and nuclear export by BDNF is accompanied by the activation of MEF2-mediated transcription, an effect that is suppressed by staurosporine. Consistent with these data, BDNF induces the expression of the MEF2 target genes Arc and Nur77, in a staurosporine-sensitive manner. In further support of the role of SIK1 in the regulation of MEF2-dependent transcription by BDNF, we found that expression of wild-type SIK1 or S577A SIK1, a mutated form of SIK1 which is retained in the nucleus of transfected cells, is sufficient to enhance MEF2 transcriptional activity in cortical neurons. Together, these data identify a previously unrecognized mechanism by which SIK1 mediates the activation of MEF2-dependent transcription by BDNF.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The calyx of Held, a specialized synaptic terminal in the medial nucleus of the trapezoid body, undergoes a series of changes during postnatal development that prepares this synapse for reliable high frequency firing. These changes reduce short-term synaptic depression during tetanic stimulation and thereby prevent action potential failures during a stimulus train. We measured presynaptic membrane capacitance changes in calyces from young postnatal day 5-7 (p5-7) or older (p10-12) rat pups to examine the effect of calcium buffer capacity on vesicle pool size and the efficiency of exocytosis. Vesicle pool size was sensitive to the choice and concentration of exogenous Ca2+ buffer, and this sensitivity was much stronger in younger animals. Pool size and exocytosis efficiency in p5-7 calyces were depressed by 0.2 mM EGTA to a greater extent than with 0.05 mM BAPTA, even though BAPTA is a 100-fold faster Ca2+ buffer. However, this was not the case for p10-12 calyces. With 5 mM EGTA, exocytosis efficiency was reduced to a much larger extent in young calyces compared to older calyces. Depression of exocytosis using pairs of 10-ms depolarizations was reduced by 0.2 mM EGTA compared to 0.05 mM BAPTA to a similar extent in both age groups. These results indicate a developmentally regulated heterogeneity in the sensitivity of different vesicle pools to Ca2+ buffer capacity. We propose that, during development, a population of vesicles that are tightly coupled to Ca2+ channels expands at the expense of vesicles more distant from Ca2+ channels.