963 resultados para Rapid evolution
Resumo:
Phylogenetic relationships and divergence times for 10 populations of the three recognized ""species"" of Brazilian lizards of genus Eurolophosaurus were estimated from 1229 bp of cyt b, COI, 12S, and 16S rRNA mitochondrial gene segments. Eurolophosaurus is monophyletic and the basal split within the genus separates E divaricatus from a clade comprising E amathites and E nanuzae. Three populations of E divaricatus, which occurs along the western bank of Rio S (a) over tildeo Francisco, were consistently grouped together. Oil the east bank of the river, E amathites and E nanuzae from state of Bahia were recovered as the sister group of E nanuzae populations from state of Minas Gerais. The paraphyly of E nanuzae and the high divergence levels among populations of E divaricatus strongly suggest that species limits in Eurolophosaurus should be revised. Even considering an extreme evolutionary rate of 2.8% sequence divergence per million years for the four gene segments analyzed together, E. divaricatus would have separated from the two other species by at least 5.5 my ago, and E. amathites from E nanuzae populations from Bahia and Minas Gerais, respectively, by 1.5 and 3.5 my. The paleolacustrine hypothesis and changes in the course of the river potentially explain faunal divergence in the area, but divergences are much older than previously admitted. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Stellar differential rotation is an important key to understand hydromagnetic stellar dynamos, instabilities, and transport processes in stellar interiors as well as for a better treatment of tides in close binary and star-planet systems. The space-borne high-precision photometry with MOST, CoRoT, and Kepler has provided large and homogeneous datasets. This allows, for the first time, the study of differential rotation statistically robust samples covering almost all stages of stellar evolution. In this sense, we introduce a method to measure a lower limit to the amplitude of surface differential rotation from high-precision evenly sampled photometric time series such as those obtained by space-borne telescopes. It is designed for application to main-sequence late-type stars whose optical flux modulation is dominated by starspots. An autocorrelation of the time series is used to select stars that allow an accurate determination of spot rotation periods. A simple two-spot model is applied together with a Bayesian Information Criterion to preliminarily select intervals of the time series showing evidence of differential rotation with starspots of almost constant area. Finally, the significance of the differential rotation detection and a measurement of its amplitude and uncertainty are obtained by an a posteriori Bayesian analysis based on a Monte Carlo Markov Chain (hereafter MCMC) approach. We apply our method to the Sun and eight other stars for which previous spot modelling has been performed to compare our results with previous ones. The selected stars are of spectral type F, G and K. Among the main results of this work, We find that autocorrelation is a simple method for selecting stars with a coherent rotational signal that is a prerequisite to a successful measurement of differential rotation through spot modelling. For a proper MCMC analysis, it is necessary to take into account the strong correlations among different parameters that exists in spot modelling. For the planethosting star Kepler-30, we derive a lower limit to the relative amplitude of the differential rotation. We confirm that the Sun as a star in the optical passband is not suitable for a measurement of the differential rotation owing to the rapid evolution of its photospheric active regions. In general, our method performs well in comparison with more sophisticated procedures used until now in the study of stellar differential rotation
Resumo:
Includes bibliography
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biologia Animal - IBILCE
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Ayes). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The Poxviruses are a family of double stranded DNA (dsDNA) viruses that cause disease in many species, both vertebrate and invertebrate. Their genomes range in size from 135 to 365 kbp and show conservation in both organization and content. In particular, the central genomic regions of the chordopoxvirus subfamily (those capable of infecting vertebrates) contain 88 genes which are present in all the virus species characterised to date and which mostly occur in the same order and orientation. In contrast, however, the terminal regions of the genomes frequently contain genes that are species or genera-specific and that are not essential for the growth of the virus in vitro but instead often encode factors with important roles in vivo including modulation of the host immune response to infection and determination of the host range of the virus. The Parapoxviruses (PPV), of which Orf virus is the prototypic species, represent a genus within the chordopoxvirus subfamily of Poxviridae and are characterised by their ability to infect ruminants and humans. The genus currently contains four recognised species of virus, bovine papular stomatitis virus (BPSV) and pseudocowpox virus (PCPV) both of which infect cattle, orf virus (OV) that infects sheep and goats, and parapoxvirus of red deer in New Zealand (PVNZ). The ORFV genome has been fully sequenced, as has that of BPSV, and is ~138 kb in length encoding ~132 genes. The vast majority of these genes allow the virus to replicate in the cytoplasm of the infected host cell and therefore encode proteins involved in replication, transcription and metabolism of nucleic acids. These genes are well conserved between all known genera of poxviruses. There is however another class of genes, located at either end of the linear dsDNA genome, that encode proteins which are non-essential for replication and generally dictate host range and virulence of the virus. The non-essential genes are often the most variable within and between species of virus and therefore are potentially useful for diagnostic purposes. Given their role in subverting the host-immune response to infection they are also targets for novel therapeutics. The function of only a relatively small number of these proteins has been elucidated and there are several genes whose function still remains obscure principally because there is little similarity between them and proteins of known function in current sequence databases. It is thought that by selectively removing some of the virulence genes, or at least neutralising the proteins in some way, current vaccines could be improved. The evolution of poxviruses has been proposed to be an adaptive process involving frequent events of gene gain and loss, such that the virus co-evolves with its specific host. Gene capture or horizontal gene transfer from the host to the virus is considered an important source of new viral genes including those likely to be involved in host range and those enabling the virus to interfere with the host immune response to infection. Given the low rate of nucleotide substitution, recombination can be seen as an essential evolutionary driving force although it is likely underestimated. Recombination in poxviruses is intimately linked to DNA replication with both viral and cellular proteins participate in this recombination-dependent replication. It has been shown, in other poxvirus genera, that recombination between isolates and perhaps even between species does occur, thereby providing another mechanism for the acquisition of new genes and for the rapid evolution of viruses. Such events may result in viruses that have a selective advantage over others, for example in re-infections (a characteristic of the PPV), or in viruses that are able to jump the species barrier and infect new hosts. Sequence data related to viral strains isolated from goats suggest that possible recombination events may have occurred between OV and PCPV (Ueda et al. 2003). The recombination events are frequent during poxvirus replication and comparative genomic analysis of several poxvirus species has revealed that recombinations occur frequently on the right terminal region. Intraspecific recombination can occur between strains of the same PPV species, but also interspecific recombination can happen depending on enough sequence similarity to enable recombination between distinct PPV species. The most important pre-requisite for a successful recombination is the coinfection of the individual host by different virus strains or species. Consequently, the following factors affecting the distribution of different viruses to shared target cells need to be considered: dose of inoculated virus, time interval between inoculation of the first and the second virus, distance between the marker mutations, genetic homology. At present there are no available data on the replication dynamics of PPV in permissive and non permissive hosts and reguarding co-infetions there are no information on the interference mechanisms occurring during the simultaneous replication of viruses of different species. This work has been carried out to set up permissive substrates allowing the replication of different PPV species, in particular keratinocytes monolayers and organotypic skin cultures. Furthermore a method to isolate and expand ovine skin stem cells was has been set up to indeep further aspects of viral cellular tropism during natural infection. The study produced important data to elucidate the replication dynamics of OV and PCPV virus in vitro as well as the mechanisms of interference that can arise during co-infection with different viral species. Moreover, the analysis carried on the genomic right terminal region of PCPV 1303/05 contributed to a better knowledge of the viral genes involved in host interaction and pathogenesis as well as to locate recombination breakpoints and genetic homologies between PPV species. Taken together these data filled several crucial gaps for the study of interspecific recombinations of PPVs which are thought to be important for a better understanding of the viral evolution and to improve the biosafety of antiviral therapy and PPV-based vectors.
Resumo:
L’ampliamento dello spettro d’ospite è strettamente connesso al processo evolutivo a cui i virus sono assoggettati e rappresenta una notevole sfida alla loro capacità di adattarsi. L’attitudine a superare le barriere di specie è conseguente alla costante e relativamente rapida evoluzione che caratterizza i virus; allo stesso tempo, la forza selettiva esercitata dal nuovo ospite rappresenterà un ulteriore stimolo per le capacità adattative del virus. Ad oggi, i meccanismi genetici ed evolutivi responsabili del salto di specie virale, cioè la trasmissione di un virus da un ospite tradizionale ad uno precedentemente resistente all’infezione, sono parzialmente sconosciuti. Nel seguente lavoro verranno presentati gli studi effettuati sulle dinamiche evolutive caratterizzanti virus a RNA e a DNA in cui si sono osservate variazioni dello spettro d’ospite. Gli studi hanno riguardato i coronavirus, con particolare riferimento al ruolo svolto dai pipistrelli nell’evoluzione dei coronavirus SARS-correlati, e l’importanza del gatto nell’evoluzione dei parvovirus dei carnivori. Nella prima sezione saranno mostrate le correlazioni genetiche dei coronavirus identificati in Italia nei pipistrelli appartenenti alla specie Rhinolophus ferrumequinum con i ceppi europei e del resto del mondo, allo scopo di chiarire l’origine evolutiva dei coronavirus dei pipistrelli correlati al virus della SARS (Bat-SARS-like CoV) europei, gli eventi migratori che hanno caratterizzato la loro diffusione nel continente e le potenziali ripercussioni sulla salute pubblica. Nella seconda sezione saranno evidenziate le caratteristiche molecolari dei ceppi di parvovirus circolanti nella popolazione felina, valutandone la diversità di sequenza e la complessità genetica, allo scopo di ottenere importanti informazioni in merito all’evoluzione del virus e alle interazioni tra il parvovirus e l’ospite.
Resumo:
Whitefish, genus Coregonus, show exceptional levels of phenotypic diversity with sympatric morphs occurring in numerous postglacial lakes in the northern hemisphere. Here, we studied the effects of human-induced eutrophication on sympatric whitefish morphs in the Swiss lake, Lake Thun. In particular, we addressed the questions whether eutrophication (i) induced hybridization between two ecologically divergent summer-spawning morphs through a loss of environmental heterogeneity, and (ii) induced rapid adaptive morphological changes through changes in the food web structure. Genetic analysis based on 11 microsatellite loci of 282 spawners revealed that the pelagic and the benthic morph represent highly distinct gene pools occurring at different relative proportions on all seven known spawning sites. Gill raker counts, a highly heritable trait, showed nearly discrete distributions for the two morphs. Multilocus genotypes characteristic of the pelagic morph had more gill rakers than genotypes characteristic of benthic morph. Using Bayesian methods, we found indications of recent but limited introgressive hybridization. Comparisons with historical gill raker data yielded median evolutionary rates of 0.24 haldanes and median selection intensities of 0.27 for this trait in both morphs for 1948-2004 suggesting rapid evolution through directional selection at this trait. However, phenotypic plasticity as an alternative explanation for this phenotypic change cannot be discarded. We hypothesize that both the temporal shifts in mean gill raker counts and the recent hybridization reflect responses to changes in the trophic state of the lake induced by pollution in the 1960s, which created novel selection pressures with respect to feeding niches and spawning site preferences.
Resumo:
Clinical peptidomics and metabolomics are two emerging "-omics" technologies with the potential not only to detect disease-specific markers, but also to give insight into the disease dependency of degradation processes and metabolic pathway alterations. However, despite their rapid evolution and major investments, a clinical breakthrough, such as the approval of a major cancer biomarker, is still out of sight. What are the reasons for this failure? In this review we focus on three important factors: sensitivity, specificity and the avoidance of bias. The way to clinical implementation of peptidomics and metabolomics is still hampered by many of the problems that had to be solved for genomics and proteomics in the past, as well as new ones that require the creation of new analytic, computational and interpretative techniques. The greatest challenge, however, will be the integration of information from different "-omics" subdisciplines into straightforward answers to clinical questions, for example, in the form of new, superior "meta-markers".
Resumo:
Hybridization is one of the fundamental mechanisms by which rapid evolution can occur in exotic species. If hybrids show increased vigour, this could significantly contribute to invasion success. Here, we compared the success of the two invasive knotweeds, Fallopia japonica and F.sachalinensis, and their hybrid, F.x bohemica, in competing against experimental communities of native plants. Using plant material from multiple clones of each taxon collected across a latitudinal gradient in Central Europe, we found that knotweed hybrids performed significantly better in competition with a native community and that they more strongly reduced the growth of the native plants. One of the parental species, F.sachalinensis, regenerated significantly less well from rhizomes, and this difference disappeared if activated carbon was added to the substrate, which suggests allelopathic inhibition of F.sachalinensis regeneration by native plants. We found substantial within-taxon variation in competitive success in all knotweed taxa, but variation was generally greatest in the hybrid. Interestingly, there was also significant variation within the genetically uniform F.japonica, possibly reflecting epigenetic differences. Our study shows that invasive knotweed hybrids are indeed more competitive than their parents and that hybridization increased the invasiveness of the exotic knotweed complex.
Resumo:
Island evolution may be expected to involve fast initial morphological divergence followed by stasis. We tested this model using the dental phenotype of modern and ancient common voles (Microtus arvalis), introduced onto the Orkney archipelago (Scotland) from continental Europe some 5000 years ago. First, we investigated phenotypic divergence of Orkney and continental European populations and assessed climatic influences. Second, phenotypic differentiation among Orkney populations was tested against geography, time, and neutral genetic patterns. Finally, we examined evolutionary change along a time series for the Orkney Mainland. Molar gigantism and anterior-lobe hypertrophy evolved rapidly in Orkney voles following introduction, without any transitional forms detected. Founder events and adaptation appear to explain this initial rapid evolution. Idiosyncrasy in dental features among different island populations of Orkney voles is also likely the result of local founder events following Neolithic translocation around the archipelago. However, against our initial expectations, a second marked phenotypic shift occurred between the 4th and 12th centuries AD, associated with increased pastoral farming and introduction of competitors (mice and rats) and terrestrial predators (foxes and cats). These results indicate that human agency can generate a more complex pattern of morphological evolution than might be expected in island rodents.