907 resultados para Random graphs


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Random Walk with Restart (RWR) is an appealing measure of proximity between nodes based on graph structures. Since real graphs are often large and subject to minor changes, it is prohibitively expensive to recompute proximities from scratch. Previous methods use LU decomposition and degree reordering heuristics, entailing O(|V|^3) time and O(|V|^2) memory to compute all (|V|^2) pairs of node proximities in a static graph. In this paper, a dynamic scheme to assess RWR proximities is proposed: (1) For unit update, we characterize the changes to all-pairs proximities as the outer product of two vectors. We notice that the multiplication of an RWR matrix and its transition matrix, unlike traditional matrix multiplications, is commutative. This can greatly reduce the computation of all-pairs proximities from O(|V|^3) to O(|delta|) time for each update without loss of accuracy, where |delta| (<<|V|^2) is the number of affected proximities. (2) To avoid O(|V|^2) memory for all pairs of outputs, we also devise efficient partitioning techniques for our dynamic model, which can compute all pairs of proximities segment-wisely within O(l|V|) memory and O(|V|/l) I/O costs, where 1<=l<=|V| is a user-controlled trade-off between memory and I/O costs. (3) For bulk updates, we also devise aggregation and hashing methods, which can discard many unnecessary updates further and handle chunks of unit updates simultaneously. Our experimental results on various datasets demonstrate that our methods can be 1–2 orders of magnitude faster than other competitors while securing scalability and exactness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new test for pathogenic Leptospira isolates, based on RAPD-PCR and high-resolution melt (HRM) analysis (which measures the melting temperature of amplicons in real time, using a fluorescent DNA-binding dye), has recently been developed. A characteristic profile of the amplicons can be used to define serovars or detect genotypes. Ten serovars, of leptospires from the species Leptospira interrogans (serovars Australis, Robinsoni, Hardjo, Pomona, Zanoni, Copenhageni and Szwajizak), L. borgpetersenii (serovar Arborea), L. kirschneri (serovar Cynopteri) and L. weilii (serovar Celledoni), were typed against 13 previously published RAPD primers, using a real-time cycler (the Corbett Life Science RotorGene 6000) and the optimised reagents from a commercial kit (Quantace SensiMix). RAPD-HRM at specific temperatures generated defining amplicon melt profiles for each of the tested serovars. These profiles were evaluated as difference-curve graphs generated using the RotorGene software package, with a cut-off of at least 8 'U' (plus or minus). The results demonstrated that RAPD-HRM can be used to measure serovar diversity and establish identity, with a high degree of stability. The characterisation of Leptospira serotypes using a DNA-based methodology is now possible. As an objective and relatively inexpensive and rapid method of serovar identification, at least for cultured isolates, RAPD-HRM assays show convincing potentia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new analytical model has been suggested for the hysteretic behaviour of beams. The model can be directly used in a response analysis without bothering to locate the precise point where the unloading commences. The model can efficiently simulate several types of realistic softening hysteretic loops. This is demonstrated by computing the response of cantilever beams under sinusoidal and random loadings. Results are presented in the form of graphs for maximum deflection, bending moment and shear

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When searching for characteristic subpatterns in potentially noisy graph data, it appears self-evident that having multiple observations would be better than having just one. However, it turns out that the inconsistencies introduced when different graph instances have different edge sets pose a serious challenge. In this work we address this challenge for the problem of finding maximum weighted cliques. We introduce the concept of most persistent soft-clique. This is subset of vertices, that 1) is almost fully or at least densely connected, 2) occurs in all or almost all graph instances, and 3) has the maximum weight. We present a measure of clique-ness, that essentially counts the number of edge missing to make a subset of vertices into a clique. With this measure, we show that the problem of finding the most persistent soft-clique problem can be cast either as: a) a max-min two person game optimization problem, or b) a min-min soft margin optimization problem. Both formulations lead to the same solution when using a partial Lagrangian method to solve the optimization problems. By experiments on synthetic data and on real social network data we show that the proposed method is able to reliably find soft cliques in graph data, even if that is distorted by random noise or unreliable observations. Copyright 2012 by the author(s)/owner(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copyright 2014 by the author(s). We present a nonparametric prior over reversible Markov chains. We use completely random measures, specifically gamma processes, to construct a countably infinite graph with weighted edges. By enforcing symmetry to make the edges undirected we define a prior over random walks on graphs that results in a reversible Markov chain. The resulting prior over infinite transition matrices is closely related to the hierarchical Dirichlet process but enforces reversibility. A reinforcement scheme has recently been proposed with similar properties, but the de Finetti measure is not well characterised. We take the alternative approach of explicitly constructing the mixing measure, which allows more straightforward and efficient inference at the cost of no longer having a closed form predictive distribution. We use our process to construct a reversible infinite HMM which we apply to two real datasets, one from epigenomics and one ion channel recording.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We seek to both detect and segment objects in images. To exploit both local image data as well as contextual information, we introduce Boosted Random Fields (BRFs), which uses Boosting to learn the graph structure and local evidence of a conditional random field (CRF). The graph structure is learned by assembling graph fragments in an additive model. The connections between individual pixels are not very informative, but by using dense graphs, we can pool information from large regions of the image; dense models also support efficient inference. We show how contextual information from other objects can improve detection performance, both in terms of accuracy and speed, by using a computational cascade. We apply our system to detect stuff and things in office and street scenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an n-way broadcast application each one of n overlay nodes wants to push its own distinct large data file to all other n-1 destinations as well as download their respective data files. BitTorrent-like swarming protocols are ideal choices for handling such massive data volume transfers. The original BitTorrent targets one-to-many broadcasts of a single file to a very large number of receivers and thus, by necessity, employs an almost random overlay topology. n-way broadcast applications on the other hand, owing to their inherent n-squared nature, are realizable only in small to medium scale networks. In this paper, we show that we can leverage this scale constraint to construct optimized overlay topologies that take into consideration the end-to-end characteristics of the network and as a consequence deliver far superior performance compared to random and myopic (local) approaches. We present the Max-Min and MaxSum peer-selection policies used by individual nodes to select their neighbors. The first one strives to maximize the available bandwidth to the slowest destination, while the second maximizes the aggregate output rate. We design a swarming protocol suitable for n-way broadcast and operate it on top of overlay graphs formed by nodes that employ Max-Min or Max-Sum policies. Using trace-driven simulation and measurements from a PlanetLab prototype implementation, we demonstrate that the performance of swarming on top of our constructed topologies is far superior to the performance of random and myopic overlays. Moreover, we show how to modify our swarming protocol to allow it to accommodate selfish nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis elaborates on the problem of preprocessing a large graph so that single-pair shortest-path queries can be answered quickly at runtime. Computing shortest paths is a well studied problem, but exact algorithms do not scale well to real-world huge graphs in applications that require very short response time. The focus is on approximate methods for distance estimation, in particular in landmarks-based distance indexing. This approach involves choosing some nodes as landmarks and computing (offline), for each node in the graph its embedding, i.e., the vector of its distances from all the landmarks. At runtime, when the distance between a pair of nodes is queried, it can be quickly estimated by combining the embeddings of the two nodes. Choosing optimal landmarks is shown to be hard and thus heuristic solutions are employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the techniques presented in this thesis is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach which considers selecting landmarks at random. Finally, they are applied in two important problems arising naturally in large-scale graphs, namely social search and community detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large probabilistic graphs arise in various domains spanning from social networks to biological and communication networks. An important query in these graphs is the k nearest-neighbor query, which involves finding and reporting the k closest nodes to a specific node. This query assumes the existence of a measure of the "proximity" or the "distance" between any two nodes in the graph. To that end, we propose various novel distance functions that extend well known notions of classical graph theory, such as shortest paths and random walks. We argue that many meaningful distance functions are computationally intractable to compute exactly. Thus, in order to process nearest-neighbor queries, we resort to Monte Carlo sampling and exploit novel graph-transformation ideas and pruning opportunities. In our extensive experimental analysis, we explore the trade-offs of our approximation algorithms and demonstrate that they scale well on real-world probabilistic graphs with tens of millions of edges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brain's structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e. g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a "fingerprint". Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the "uncertainty" of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let G be a graph on n vertices with maximum degree ?. We use the Lovasz local lemma to show the following two results about colourings ? of the edges of the complete graph Kn. If for each vertex v of Kn the colouring ? assigns each colour to at most (n - 2)/(22.4?2) edges emanating from v, then there is a copy of G in Kn which is properly edge-coloured by ?. This improves on a result of Alon, Jiang, Miller, and Pritikin [Random Struct. Algorithms 23(4), 409433, 2003]. On the other hand, if ? assigns each colour to at most n/(51?2) edges of Kn, then there is a copy of G in Kn such that each edge of G receives a different colour from ?. This proves a conjecture of Frieze and Krivelevich [Electron. J. Comb. 15(1), R59, 2008]. Our proofs rely on a framework developed by Lu and Szekely [Electron. J. Comb. 14(1), R63, 2007] for applying the local lemma to random injections. In order to improve the constants in our results we use a version of the local lemma due to Bissacot, Fernandez, Procacci, and Scoppola [preprint, arXiv:0910.1824]. (c) 2011 Wiley Periodicals, Inc. Random Struct. Alg., 40, 425436, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nella tesi sono trattate due famiglie di modelli meccanico statistici su vari grafi: i modelli di spin ferromagnetici (o di Ising) e i modelli di monomero-dimero. Il primo capitolo è dedicato principalmente allo studio del lavoro di Dembo e Montanari, in cui viene risolto il modello di Ising su grafi aleatori. Nel secondo capitolo vengono studiati i modelli di monomero-dimero, a partire dal lavoro di Heilemann e Lieb,con l'intento di dare contributi nuovi alla teoria. I principali temi trattati sono disuguaglianze di correlazione, soluzioni esatte su alcuni grafi ad albero e sul grafo completo, la concentrazione dell'energia libera intorno al proprio valor medio sul grafo aleatorio diluito di Erdös-Rényi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06