902 resultados para Random codes
Resumo:
Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Feature selection is one of important and frequently used techniques in data preprocessing. It can improve the efficiency and the effectiveness of data mining by reducing the dimensions of feature space and removing the irrelevant and redundant information. Feature selection can be viewed as a global optimization problem of finding a minimum set of M relevant features that describes the dataset as well as the original N attributes. In this paper, we apply the adaptive partitioned random search strategy into our feature selection algorithm. Under this search strategy, the partition structure and evaluation function is proposed for feature selection problem. This algorithm ensures the global optimal solution in theory and avoids complete randomness in search direction. The good property of our algorithm is shown through the theoretical analysis.
Resumo:
Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A mixture model incorporating long-term survivors has been adopted in the field of biostatistics where some individuals may never experience the failure event under study. The surviving fractions may be considered as cured. In most applications, the survival times are assumed to be independent. However, when the survival data are obtained from a multi-centre clinical trial, it is conceived that the environ mental conditions and facilities shared within clinic affects the proportion cured as well as the failure risk for the uncured individuals. It necessitates a long-term survivor mixture model with random effects. In this paper, the long-term survivor mixture model is extended for the analysis of multivariate failure time data using the generalized linear mixed model (GLMM) approach. The proposed model is applied to analyse a numerical data set from a multi-centre clinical trial of carcinoma as an illustration. Some simulation experiments are performed to assess the applicability of the model based on the average biases of the estimates formed. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Codes C-1,...,C-M of length it over F-q and an M x N matrix A over F-q define a matrix-product code C = [C-1 (...) C-M] (.) A consisting of all matrix products [c(1) (...) c(M)] (.) A. This generalizes the (u/u + v)-, (u + v + w/2u + v/u)-, (a + x/b + x/a + b + x)-, (u + v/u - v)- etc. constructions. We study matrix-product codes using Linear Algebra. This provides a basis for a unified analysis of /C/, d(C), the minimum Hamming distance of C, and C-perpendicular to. It also reveals an interesting connection with MDS codes. We determine /C/ when A is non-singular. To underbound d(C), we need A to be 'non-singular by columns (NSC)'. We investigate NSC matrices. We show that Generalized Reed-Muller codes are iterative NSC matrix-product codes, generalizing the construction of Reed-Muller codes, as are the ternary 'Main Sequence codes'. We obtain a simpler proof of the minimum Hamming distance of such families of codes. If A is square and NSC, C-perpendicular to can be described using C-1(perpendicular to),...,C-M(perpendicular to) and a transformation of A. This yields d(C-perpendicular to). Finally we show that an NSC matrix-product code is a generalized concatenated code.
Resumo:
We reinterpret the state space dimension equations for geometric Goppa codes. An easy consequence is that if deg G less than or equal to n-2/2 or deg G greater than or equal to n-2/2 + 2g then the state complexity of C-L(D, G) is equal to the Wolf bound. For deg G is an element of [n-1/2, n-3/2 + 2g], we use Clifford's theorem to give a simple lower bound on the state complexity of C-L(D, G). We then derive two further lower bounds on the state space dimensions of C-L(D, G) in terms of the gonality sequence of F/F-q. (The gonality sequence is known for many of the function fields of interest for defining geometric Goppa codes.) One of the gonality bounds uses previous results on the generalised weight hierarchy of C-L(D, G) and one follows in a straightforward way from first principles; often they are equal. For Hermitian codes both gonality bounds are equal to the DLP lower bound on state space dimensions. We conclude by using these results to calculate the DLP lower bound on state complexity for Hermitian codes.
Resumo:
A finite-element method is used to study the elastic properties of random three-dimensional porous materials with highly interconnected pores. We show that Young's modulus, E, is practically independent of Poisson's ratio of the solid phase, nu(s), over the entire solid fraction range, and Poisson's ratio, nu, becomes independent of nu(s) as the percolation threshold is approached. We represent this behaviour of nu in a flow diagram. This interesting but approximate behaviour is very similar to the exactly known behaviour in two-dimensional porous materials. In addition, the behaviour of nu versus nu(s) appears to imply that information in the dilute porosity limit can affect behaviour in the percolation threshold limit. We summarize the finite-element results in terms of simple structure-property relations, instead of tables of data, to make it easier to apply the computational results. Without using accurate numerical computations, one is limited to various effective medium theories and rigorous approximations like bounds and expansions. The accuracy of these equations is unknown for general porous media. To verify a particular theory it is important to check that it predicts both isotropic elastic moduli, i.e. prediction of Young's modulus alone is necessary but not sufficient. The subtleties of Poisson's ratio behaviour actually provide a very effective method for showing differences between the theories and demonstrating their ranges of validity. We find that for moderate- to high-porosity materials, none of the analytical theories is accurate and, at present, numerical techniques must be relied upon.
Resumo:
Recently, several groups have investigated quantum analogues of random walk algorithms, both on a line and on a circle. It has been found that the quantum versions have markedly different features to the classical versions. Namely, the variance on the line, and the mixing time on the circle increase quadratically faster in the quantum versions as compared to the classical versions. Here, we propose a scheme to implement the quantum random walk on a line and on a circle in an ion trap quantum computer. With current ion trap technology, the number of steps that could be experimentally implemented will be relatively small. However, we show how the enhanced features of these walks could be observed experimentally. In the limit of strong decoherence, the quantum random walk tends to the classical random walk. By measuring the degree to which the walk remains quantum, '' this algorithm could serve as an important benchmarking protocol for ion trap quantum computers.