933 resultados para Random Pore Model
Resumo:
Lead fluoroborate glasses were prepared by the melt-quenching technique and characterized in terms of (micro)structural and electrical properties. The study was conducted on as prepared as well as temperature- and/or electric field-treated glass samples. The results show that, in the as-prepared glassy-state materials, electrical conductivity improved with increasing the PbF(2) glass content. This result involves both an increase of the fluoride charge carrier density and, especially, a decrease of the activation energy from a glass structure expansion improving charge carrier mobility. Moreover, for the electric field-treated glass samples, surface crystallization was observed even below the glass transition temperature. As previously proposed in literature, and shown here, the occurrence of this phenomenon arose from an electrochemically induced redox reaction at the electrodes, followed by crystallite nucleation. Once nucleated, growth of beta-PbF(2) crystallites, with the indication of incorporating reduced lead ions (Pb(+)), was both (micro)structurally and electrically detectable and analyzed. The overall crystallization-associated features observed here adapt well with the floppy-rigid model that has been proposed to further complete the original continuous-random-network model by Zachariasen for closely addressing not only glasses' structure but also crystallization mechanism. Finally, the crystallization-modified kinetic picture of the glasses' electrical properties, through application of polarization/depolarization measurements originally combined with impedance spectroscopy, was extensively explored. (c) 2008 American Institute of Physics.
Resumo:
The parallel mutation-selection evolutionary dynamics, in which mutation and replication are independent events, is solved exactly in the case that the Malthusian fitnesses associated to the genomes are described by the random energy model (REM) and by a ferromagnetic version of the REM. The solution method uses the mapping of the evolutionary dynamics into a quantum Ising chain in a transverse field and the Suzuki-Trotter formalism to calculate the transition probabilities between configurations at different times. We find that in the case of the REM landscape the dynamics can exhibit three distinct regimes: pure diffusion or stasis for short times, depending on the fitness of the initial configuration, and a spin-glass regime for large times. The dynamic transition between these dynamical regimes is marked by discontinuities in the mean-fitness as well as in the overlap with the initial reference sequence. The relaxation to equilibrium is described by an inverse time decay. In the ferromagnetic REM, we find in addition to these three regimes, a ferromagnetic regime where the overlap and the mean-fitness are frozen. In this case, the system relaxes to equilibrium in a finite time. The relevance of our results to information processing aspects of evolution is discussed.
Resumo:
Background: Although meta-analyses have shown that placebo responses are large in Major Depressive Disorder (MDD) trials; the placebo response of devices such as repetitive transcranial magnetic stimulation (rTMS) has not been systematically assessed. We proposed to assess placebo responses in two categories of MDD trials: pharmacological (antidepressant drugs) and non-pharmacological (device-rTMS) trials. Methodology/Principal Findings: We performed a systematic review and meta-analysis of the literature from April 2002 to April 2008, searching MEDLINE, Cochrane, Scielo and CRISP electronic databases and reference lists from retrieved studies and conference abstracts. We used the keywords placebo and depression and escitalopram for pharmacological studies; and transcranial magnetic stimulation and depression and sham for non-pharmacological studies. All randomized, double-blinded, placebo-controlled, parallel articles on major depressive disorder were included. Forty-one studies met our inclusion criteria-29 in the rTMS arm and 12 in the escitalopram arm. We extracted the mean and standard values of depression scores in the placebo group of each study. Then, we calculated the pooled effect size for escitalopram and rTMS arm separately, using Cohen's d as the measure of effect size. We found that placebo response are large for both escitalopram (Cohen's d-random-effects model-1.48; 95% C.I. 1.26 to 1.6) and rTMS studies (0.82; 95% C.I. 0.63 to 1). Exploratory analyses show that sham response is associated with refractoriness and with the use of rTMS as an add-on therapy, but not with age, gender and sham method utilized. Conclusions/Significance: We confirmed that placebo response in MDD is large regardless of the intervention and is associated with depression refractoriness and treatment combination (add-on rTMS studies). The magnitude of the placebo response seems to be related with study population and study design rather than the intervention itself.
Resumo:
We describe a one-time signature scheme based on the hardness of the syndrome decoding problem, and prove it secure in the random oracle model. Our proposal can be instantiated on general linear error correcting codes, rather than restricted families like alternant codes for which a decoding trapdoor is known to exist. (C) 2010 Elsevier Inc. All rights reserved,
Resumo:
One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.
Resumo:
As is well known, Hessian-based adaptive filters (such as the recursive-least squares algorithm (RLS) for supervised adaptive filtering, or the Shalvi-Weinstein algorithm (SWA) for blind equalization) converge much faster than gradient-based algorithms [such as the least-mean-squares algorithm (LMS) or the constant-modulus algorithm (CMA)]. However, when the problem is tracking a time-variant filter, the issue is not so clear-cut: there are environments for which each family presents better performance. Given this, we propose the use of a convex combination of algorithms of different families to obtain an algorithm with superior tracking capability. We show the potential of this combination and provide a unified theoretical model for the steady-state excess mean-square error for convex combinations of gradient- and Hessian-based algorithms, assuming a random-walk model for the parameter variations. The proposed model is valid for algorithms of the same or different families, and for supervised (LMS and RLS) or blind (CMA and SWA) algorithms.
Resumo:
Data from 9 studies were compiled to evaluate the effects of 20 yr of selection for postweaning weight (PWW) on carcass characteristics and meat quality in experimental herds of control Nellore (NeC) and selected Nellore (NeS), Caracu (CaS), Guzerah (GuS), and Gir (GiS) breeds. These studies were conducted with animals from a genetic selection program at the Experimental Station of Sertaozinho, Sao Paulo State, Brazil. After the performance test (168 d postweaning), bulls (n = 490) from the calf crops born between 1992 and 2000 were finished and slaughtered to evaluate carcass traits and meat quality. Treatments were different across studies. A meta-analysis was conducted with a random coefficients model in which herd was considered a fixed effect and treatments within year and year were considered as random effects. Either calculated maturity degree or initial BW was used interchangeably as the covariate, and least squares means were used in the multiple-comparison analysis. The CaS and NeS had heavier (P = 0.002) carcasses than the NeC and GiS; GuS were intermediate. The CaS had the longest carcass (P < 0.001) and heaviest spare ribs (P < 0.001), striploin (P < 0.001), and beef plate (P = 0.013). Although the body, carcass, and quarter weights of NeS were similar to those of CaS, NeS had more edible meat in the leg region than did CaS bulls. Selection for PWW increased rib-eye area in Nellore bulls. Selected Caracu had the lowest (most favorable) shear force values compared with the NeS (P = 0.003), NeC (P = 0.005), GuS (P = 0.003), and GiS (P = 0.008). Selection for PWW increased body, carcass, and meat retail weights in the Nellore without altering dressing percentage and body fat percentage.
Resumo:
Many images consist of two or more 'phases', where a phase is a collection of homogeneous zones. For example, the phases may represent the presence of different sulphides in an ore sample. Frequently, these phases exhibit very little structure, though all connected components of a given phase may be similar in some sense. As a consequence, random set models are commonly used to model such images. The Boolean model and models derived from the Boolean model are often chosen. An alternative approach to modelling such images is to use the excursion sets of random fields to model each phase. In this paper, the properties of excursion sets will be firstly discussed in terms of modelling binary images. Ways of extending these models to multi-phase images will then be explored. A desirable feature of any model is to be able to fit it to data reasonably well. Different methods for fitting random set models based on excursion sets will be presented and some of the difficulties with these methods will be discussed.
Resumo:
Gas sorption by coal is closely related to its physical and chemical properties, which are, in turn, governed by coal type and rank. The role of coal type (sensu maceral composition) is not fully established but it is clear that coal type may affect both adsorption capacity and desorption rate. Adsorption capacity is closely related to micropore (pores <2 nm) development, which is rank and maceral dependent. Adsorption isotherms indicate that in most cases bright (vitrinite-rich) coals have a greater adsorption capacity than their dull (often inertinite-rich) equivalents. However, no differences, or even the opposing trend, may be observed in relation to coal type. Desorption rate investigations have been performed using selected bright and dull coal samples in a high pressure microbalance. Interpretation of results using unipore spherical and bidisperse pore models indicate the importance of the pore structure. Bright, vitrinite-rich coals usually have the slowest desorption rates which is associated with their highly microporous structure. However, rapid desorption in bright coals may be related to development of extensive, unmineralised fracture systems. Both macro-and micro-pore systems are implicated in the more rapidly desorbing dull coals. Some dull, inertinite-rich coals may rapidly desorb due to a predominance of large, open cell lumina. Mineral matter is essentially nonadsorbent to coal gases and acts as a simple diluent. However, mineral-rich coals may be associated with more rapid desorption. Coal rank and type (maceral composition) per se do not appear to be the critical factors in controlling gas sorption, but rather the influence they exert over pore structure development. (C) 1998 Elsevier Science B.V.
Resumo:
Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE To analyze whether gender influence survival results of kidney transplant grafts and patients.METHODS Systematic review with meta-analysis of cohort studies available on Medline (PubMed), LILACS, CENTRAL, and Embase databases, including manual searching and in the grey literature. The selection of studies and the collection of data were conducted twice by independent reviewers, and disagreements were settled by a third reviewer. Graft and patient survival rates were evaluated as effectiveness measurements. Meta-analysis was conducted with the Review Manager® 5.2 software, through the application of a random effects model. Recipient, donor, and donor-recipient gender comparisons were evaluated.RESULTS : Twenty-nine studies involving 765,753 patients were included. Regarding graft survival, those from male donors were observed to have longer survival rates as compared to the ones from female donors, only regarding a 10-year follow-up period. Comparison between recipient genders was not found to have significant differences on any evaluated follow-up periods. In the evaluation between donor-recipient genders, male donor-male recipient transplants were favored in a statistically significant way. No statistically significant differences were observed in regards to patient survival for gender comparisons in all follow-up periods evaluated.CONCLUSIONS The quantitative analysis of the studies suggests that donor or recipient genders, when evaluated isolatedly, do not influence patient or graft survival rates. However, the combination between donor-recipient genders may be a determining factor for graft survival.
Resumo:
ABSTRACT OBJECTIVE To estimate the prevalence of hypertension among adolescent Brazilian students. METHODS A systematic review of school-based cross-sectional studies was conducted. The articles were searched in the databases MEDLINE, Embase, Scopus, LILACS, SciELO, Web of Science, CAPES thesis database and Trip Database. In addition, we examined the lists of references of relevant studies to identify potentially eligible articles. No restrictions regarding publication date, language, or status applied. The studies were selected by two independent evaluators, who also extracted the data and assessed the methodological quality following eight criteria related to sampling, measuring blood pressure, and presenting results. The meta-analysis was calculated using a random effects model and analyses were performed to investigate heterogeneity. RESULTS We retrieved 1,577 articles from the search and included 22 in the review. The included articles corresponded to 14,115 adolescents, 51.2% (n = 7,230) female. We observed a variety of techniques, equipment, and references used. The prevalence of hypertension was 8.0% (95%CI 5.0–11.0; I2 = 97.6%), 9.3% (95%CI 5.6–13.6; I2 = 96.4%) in males and 6.5% (95%CI 4.2–9.1; I2 = 94.2%) in females. The meta-regression failed to identify the causes of the heterogeneity among studies. CONCLUSIONS Despite the differences found in the methodologies of the included studies, the results of this systematic review indicate that hypertension is prevalent in the Brazilian adolescent school population. For future investigations, we suggest the standardization of techniques, equipment, and references, aiming at improving the methodological quality of the studies.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Background:Long-term outcomes of drug-eluting stents (DES) versus bare-metal stents (BMS) in patients with ST-segment elevation myocardial infarction (STEMI) remain uncertain.Objective:To investigate long-term outcomes of drug-eluting stents (DES) versus bare-metal stents (BMS) in patients with ST-segment elevation myocardial infarction (STEMI).Methods:We performed search of MEDLINE, EMBASE, the Cochrane library, and ISI Web of Science (until February 2013) for randomized trials comparing more than 12-month efficacy or safety of DES with BMS in patients with STEMI. Pooled estimate was presented with risk ratio (RR) and its 95% confidence interval (CI) using random-effects model.Results:Ten trials with 7,592 participants with STEMI were included. The overall results showed that there was no significant difference in the incidence of all-cause death and definite/probable stent thrombosis between DES and BMS at long-term follow-up. Patients receiving DES implantation appeared to have a lower 1-year incidence of recurrent myocardial infarction than those receiving BMS (RR = 0.75, 95% CI 0.56 to 1.00, p= 0.05). Moreover, the risk of target vessel revascularization (TVR) after receiving DES was consistently lowered during long-term observation (all p< 0.01). In subgroup analysis, the use of everolimus-eluting stents (EES) was associated with reduced risk of stent thrombosis in STEMI patients (RR = 0.37, p=0.02).Conclusions:DES did not increase the risk of stent thrombosis in patients with STEMI compared with BMS. Moreover, the use of DES did lower long-term risk of repeat revascularization and might decrease the occurrence of reinfarction.