984 resultados para Radiative transition rates
Resumo:
The configuration-interaction method as implemented in the computer code CIV3 is used to determine energy levels, electric dipole radiative transition wavelengths, oscillator strengths and transition probabilities for inner-shell excitation of transitions in Fe XV and Fe XVI. Specifically, transitions are considered of the type 1s(2) 2s(2) 2p(6) 3s(2) -1s(2) 2s(2) 2p(5) 3l3l' 3l" (l, l' and l" = s,p or d) in FeXV and 1s(2) 2s(2) 2p(6) 3s- 1s(2) 2s(2) 2p(5) 3l3l' (l and l' = s,p or d) in FeXVI, using the relativistic Breit-Pauli approach. An assessment of the accuracy of the derived atomic data is performed.
Resumo:
This paper examines the determinants of unemployment duration in a competing risks framework with two destination states: inactivity and employment. The innovation is the recognition of defective risks. A polynomial hazard function is used to differentiate between two possible sources of infinite durations. The first is produced by a random process of unlucky draws, the second by workers rejecting a destination state. The evidence favors the mover-stayer model over the search model. Refinement of the former approach, using a more flexible baseline hazard function, produces a robust and more convincing explanation for positive and zero transition rates out of unemployment.
Resumo:
Effective collision strengths computed by the R-matrix method are presented for the electron-impact excitation of nitrogen-like S X. The total wave function used in the expansion includes the lowest 11 eigenstates of S X which arise from the 2s(2)2p(3), 2s2p(4), 2p(5) and 2s(2)2p(2)3s configurations. These 11 LS target states correspond to 22 fine-structure levels, giving 231 possible transitions. All the effective collision strengths for these transitions are tabulated in the range log T(K) = 4.6 to log T(K) = 6.7. The energy level values and oscillator strengths for allowed transitions are also tabulated. The effective collision strengths were calculated by averaging the electron collision strengths over a Maxwellian distribution of velocities. The present effective collision strengths are the only results currently available for these fine-structure transition rates. (C) 2000 Academic Press.
Resumo:
Here, we demonstrate that quasi self-standing Au nanorod arrays prepared with plasma polymerisation deposited SiO2 dielectric spacers support surface enhanced fluorescence (SEF) while maintaining high signal reproducibility. We show that it is possible to find a balance between enhanced radiative and non-radiative decay rates at which the fluorescent intensity is maximized. The SEF signal optimised with a 30 nm spacer layer thickness showed a 3.5-fold enhancement with a signal variance of <15% thereby keeping the integrity of the nanorod array. We also demonstrate the decreased importance of obtaining resonance conditions when localized surface plasmon resonance is positioned within the spectral region of Au interband transitions. Procedures for further increasing the SEF enhancement factor are also discussed.
Resumo:
Effective collision strengths for electron-impact excitation of the N-like ion S x are calculated in the close-coupling approximation using the multichannel R-matrix method. Specific attention is given to the 10 astrophysically important fine-structure forbidden transitions among the 4SO, 2Do and 2Po levels in the 2s22p3 ground configuration. The total (e- + ion) wavefunction is expanded in terms of the 11 lowest LS eigenstates of S x, and each eigenstate is represented by extensive configuration-interaction wavefunctions. The collision strengths obtained are thermally averaged over a Maxwellian distribution of velocities, for all 10 fine-structure transitions, over the range of electron temperatures log T(K) = 4.6-6.7 (the range appropriate for astrophysical applications). The present effective collision strengths are the only results currently available for these fine-structure transition rates.
Resumo:
Optical absorption and emission spectral studies of various phthalocyanine molecules, viz., LaPc, NdPc, SmPc, EuPc, CuPc and ZnPc in a polymer matrix of cyano acrylate are reported for the first time. All the absorption spectra show an intense B band (Soret) in the UV region followed by a weaker Q band in the visible region. The positions of the Q and B bands are found to have dependence on the metallic substitution. Values of the important spectral parameters, viz., molar extinction coefficient (ϵ), oscillator strength (f), radiative transition rate and decay time of the excited singlet state are also presented and compared with other solid matrices. The recorded fluorescence spectrum shows two broad emission bands in the case of NdPc, whereas for ZnPc only a very weak band is observed. The absence of emission bands for the other metallated phthalocyanines is attributed to increased spin orbit interaction and intersystem crossing.
Resumo:
Relativistic Auger rates for the 2p spectra of Mg-like ions have been calculated in the atomic range 13 < Z < 36. We used the multiconfiguration Dirac-Fock method but beyond a simple frozen-orbital approach we include also relaxation for the bound electrons and the interchannel interaction between the continuum states. Both effects may alter the individual transition rates remarkably. This is analysed for a few selected states within the isoelectronic sequence. Weak transitions within the 2p spectra can be changed by an order of magnitude because of the continuum coupling. The influence of both effects for higher-Z ions is reduced but still remain visible.
Resumo:
The concept of a "Superheavy Quasiatom" is discussed. Radiative transition times are compared with the lifetime of the intermediate system, cross sections are calculated within a two-collision model and induced transitions and their anisotropic emission are discussed. Recent experimental and theoretical results are presented from collision systems obtained with I-beams bombarding various heavy targets, giving combined Z-values between 120 and 145. Results include the energy dependence of the peak structure interpreted as M X-rays from superheavy quasiatoms and the anisotropy of X-ray emission referred to the beam direction. The data are discussed within the models available. These cannot explain the streng emission of anisotropic radiation in the X-ray energy range of quasiatomic M X-rays at small bombarding energies.
Resumo:
The evolutionary history of gains and losses of vegetative reproductive propagules (soredia) in Porpidia s.l., a group of lichen-forming ascomycetes, was clarified using Bayesian Markov chain Monte Carlo (MCMC) approaches to monophyly tests and a combined MCMC and maximum likelihood approach to ancestral character state reconstructions. The MCMC framework provided confidence estimates for the reconstructions of relationships and ancestral character states, which formed the basis for tests of evolutionary hypotheses. Monophyly tests rejected all hypotheses that predicted any clustering of reproductive modes in extant taxa. In addition, a nearest-neighbor statistic could not reject the hypothesis that the vegetative reproductive mode is randomly distributed throughout the group. These results show that transitions between presence and absence of the vegetative reproductive mode within Porpidia s.l. occurred several times and independently of each other. Likelihood reconstructions of ancestral character states at selected nodes suggest that - contrary to previous thought - the ancestor to Porpidia s.l. already possessed the vegetative reproductive mode. Furthermore, transition rates are reconstructed asymmetrically with the vegetative reproductive mode being gained at a much lower rate than it is lost. A cautious note has to be added, because a simulation study showed that the ancestral character state reconstructions were highly dependent on taxon sampling. However, our central conclusions, particularly the higher rate of change from vegetative reproductive mode present to absent than vice versa within Porpidia s.l., were found to be broadly independent of taxon sampling. [Ancestral character state reconstructions; Ascomycota, Bayesian inference; hypothesis testing; likelihood; MCMC; Porpidia; reproductive systems]
Resumo:
This article presents and assesses an algorithm that constructs 3D distributions of cloud from passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred synergistically from lidar, cloud radar and imager data. It effectively widens the active–passive retrieved cross-section (RXS) of cloud properties, thereby enabling computation of radiative fluxes and radiances that can be compared with measured values in an attempt to perform radiative closure experiments that aim to assess the RXS. For this introductory study, A-train data were used to verify the scene-construction algorithm and only 1D radiative transfer calculations were performed. The construction algorithm fills off-RXS recipient pixels by computing sums of squared differences (a cost function F) between their spectral radiances and those of potential donor pixels/columns on the RXS. Of the RXS pixels with F lower than a certain value, the one with the smallest Euclidean distance to the recipient pixel is designated as the donor, and its retrieved cloud properties and other attributes such as 1D radiative heating rates are consigned to the recipient. It is shown that both the RXS itself and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery can be reconstructed extremely well using just visible and thermal infrared channels. Suitable donors usually lie within 10 km of the recipient. RXSs and their associated radiative heating profiles are reconstructed best for extensive planar clouds and less reliably for broken convective clouds. Domain-average 1D broadband radiative fluxes at the top of theatmosphere(TOA)for (21 km)2 domains constructed from MODIS, CloudSat andCloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data agree well with coincidental values derived from Clouds and the Earth’s Radiant Energy System (CERES) radiances: differences betweenmodelled and measured reflected shortwave fluxes are within±10Wm−2 for∼35% of the several hundred domains constructed for eight orbits. Correspondingly, for outgoing longwave radiation∼65% are within ±10Wm−2.
Resumo:
We consider a non-equilibrium three-state model whose dynamics is Markovian and displays the same symmetry as the three-state Potts model, i.e. the transition rates are invariant under the cyclic permutation of the states. Unlike the Potts model, detailed balance is, in general, not satisfied. The aging and the stationary properties of the model defined on a square lattice are obtained by means of large-scale Monte Carlo simulations. We show that the phase diagram presents a critical line, belonging to the three-state Potts universality class, that ends at a point whose universality class is that of the Voter model. Aging is considered on the critical line, at the Voter point and in the ferromagnetic phase.
Resumo:
Consider a continuous-time Markov process with transition rates matrix Q in the state space Lambda boolean OR {0}. In In the associated Fleming-Viot process N particles evolve independently in A with transition rates matrix Q until one of them attempts to jump to state 0. At this moment the particle jumps to one of the positions of the other particles, chosen uniformly at random. When Lambda is finite, we show that the empirical distribution of the particles at a fixed time converges as N -> infinity to the distribution of a single particle at the same time conditioned on not touching {0}. Furthermore, the empirical profile of the unique invariant measure for the Fleming-Viot process with N particles converges as N -> infinity to the unique quasistationary distribution of the one-particle motion. A key element of the approach is to show that the two-particle correlations are of order 1/N.
Resumo:
In this work, a series of transparent di-ureasil hybrids containing different amounts of methacrylic acid modified zirconium tetrapropoxide (ZrMcOH) nanoclusters (5-85 mol%) and incorporating EuCl3 and [Eu(tta)(3)(H2O)(2)](tta = thenoyltrifluoroacetonate) complex were prepared. These hybrids are multi-wave-length emitters due to the convolution of the host intrinsic emission (electron-hole recombinations occurring in siliceous and urea cross-linkages) Eu3+ intra-4f(6) transitions. The ZrMcOH incorporation deviates the maximum excitation wavelength of the hybrid host intrinsic emission from the UV (365 nm) to the blue (420 nm) and enhances the absolute emission quantum yield from 6.0 +/- 0.6% to 9.0 +/- 0.9%, and contributes to an increase in the D-5(0) lifetime values, quantum efficiency due to a decrease in the non-radiative transition probability and OH groups coordinated to the Eu3+ ions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)