944 resultados para Radial Distribution Functions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure of computer generated nanocrystalline coppers is simulated by using molecular dynamics with the Finnis-Sinclair potential, analysed by means of radial distribution functions, coordination number, atomic energy and local crystalline order. The influence of the grain size on the nanocrystalline structure is studied. The results reveal that as the grain size is reduced, the grain boundary shows no significant structural difference, but the grain interior becomes more disordered, and their structural difference diminishes gradually; however, the density and the atomic average energy of the grain boundary present different tendencies from those of the grain interior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ternary alloys of nickel-palladium-phosphorus and iron-palladium- phosphorus containing 20 atomic % phosphorus were rapidly quenched from the liquid state. The structure of the quenched alloys was investigated by X-ray diffraction. Broad maxima in the diffraction patterns, indicative of a glass-like structure, were obtained for 13 to 73 atomic % nickel and 13 to 44 atomic % iron, with palladium adding up to 80%.

Radial distribution functions were computed from the diffraction data and yielded average interatomic distances and coordination numbers. The structure of the amorphous alloys could be explained in terms of structural units analogous to those existing in the crystalline Pd3P, Ni3P and Fe3P phases, with iron or nickel substituting for palladium. A linear relationship between interatomic distances and composition, similar to Vegard's law, was shown for these metallic glasses.

Electrical resistivity measurements showed that the quenched alloys were metallic. Measurements were performed from liquid helium temperatures (4.2°K) up to the vicinity of the melting points (900°K- 1000°K). The temperature coefficient in the glassy state was very low, of the order of 10-4/°K. A resistivity minimum was found at low temperature, varying between 9°K and 14°K for Nix-Pd80-x -P20 and between 17°K and 96°K for Fex-Pd80-x -P20, indicating the presence of a Kondo effect. Resistivity measurements, with a constant heating rate of about 1.5°C/min,showed progressive crystallization above approximately 600°K.

The magnetic moments of the amorphous Fe-Pd-P alloys were measured as a function of magnetic field and temperature. True ferromagnetism was found for the alloys Fe32-Pd48-P20 and Fe44-Pd36-P20 with Curie points at 165° K and 380° K respectively. Extrapolated values of the saturation magnetic moments to 0° K were 1.70 µB and 2.10 µB respectively. The amorphous alloy Fe23-Pd57-P20 was assumed to be superparamagnetic. The experimental data indicate that phosphorus contributes to the decrease of moments by electron transfer, whereas palladium atoms probably have a small magnetic moment. A preliminary investigation of the Ni-Pd-P amorphous alloys showed that these alloys are weakly paramagnetic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microscopic properties of a two-dimensional model dense fluid of Lennard-Jones disks have been studied using the so-called "molecular dynamics" method. Analyses of the computer-generated simulation data in terms of "conventional" thermodynamic and distribution functions verify the physical validity of the model and the simulation technique.

The radial distribution functions g(r) computed from the simulation data exhibit several subsidiary features rather similar to those appearing in some of the g(r) functions obtained by X-ray and thermal neutron diffraction measurements on real simple liquids. In the case of the model fluid, these "anomalous" features are thought to reflect the existence of two or more alternative configurations for local ordering.

Graphical display techniques have been used extensively to provide some intuitive insight into the various microscopic phenomena occurring in the model. For example, "snapshots" of the instantaneous system configurations for different times show that the "excess" area allotted to the fluid is collected into relatively large, irregular, and surprisingly persistent "holes". Plots of the particle trajectories over intervals of 2.0 to 6.0 x 10-12 sec indicate that the mechanism for diffusion in the dense model fluid is "cooperative" in nature, and that extensive diffusive migration is generally restricted to groups of particles in the vicinity of a hole.

A quantitative analysis of diffusion in the model fluid shows that the cooperative mechanism is not inconsistent with the statistical predictions of existing theories of singlet, or self-diffusion in liquids. The relative diffusion of proximate particles is, however, found to be retarded by short-range dynamic correlations associated with the cooperative mechanism--a result of some importance from the standpoint of bimolecular reaction kinetics in solution.

A new, semi-empirical treatment for relative diffusion in liquids is developed, and is shown to reproduce the relative diffusion phenomena observed in the model fluid quite accurately. When incorporated into the standard Smoluchowski theory of diffusion-controlled reaction kinetics, the more exact treatment of relative diffusion is found to lower the predicted rate of reaction appreciably.

Finally, an entirely new approach to an understanding of the liquid state is suggested. Our experience in dealing with the simulation data--and especially, graphical displays of the simulation data--has led us to conclude that many of the more frustrating scientific problems involving the liquid state would be simplified considerably, were it possible to describe the microscopic structures characteristic of liquids in a concise and precise manner. To this end, we propose that the development of a formal language of partially-ordered structures be investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystal formation process of charged colloidal particles is investigated using Brownian dynamics (BD) simulations. The particles are assumed to interact with the pair-additive repulsive Yukawa potential. The time evolution of crystallization process and the crystal structure during the simulation are characterized by means of the radial distribution functions (RDF) and mean square displacement (MSD). The simulations show that when the interaction is featured with long-range, particles can spontaneously assemble into body-centered-cubic (BCC) arrays at relatively low particle number density. When the interaction is short-ranged, with increasing the number density particles become trapped into a stagnant disordered configuration before the crystallization could be actualized. The simulations further show that as long as the trapped configurations are bypassed, the face-centered-cubic (FCC) structures can be achieved and are actually more stable than BCC structures. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The particle transfer molecular dynamics is used to study the phase equilibria of linear and branched chain molecules. The scaling of the critical temperature versus chain length is obtained and the critical densities are found to decrease with increasing chain length, which are in agreement with the results of experiment and theory. The phase diagrams of the linear and the branched chain molecules nearly overlap with each other. Moreover, the radial distribution functions of linear and branched chain molecules in gas phase are very similar, but in the liquid phase, they are different for different kinds of chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

McMillan, P. F., Wilson, M., Wilding, M. C. (2003). Polyamorphism in aluminate liquids. Journal of Physics: Condensed Matter, 15 (36), 6105-6121 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have performed calculations of the solvation effects on a number of equilibrium constants in water using a recently proposed hybrid quantum classical scheme in which the liquid environment is modelled using classical solvent molecules and the solute electronic structure is computed using modern quantum chemical methods. The liquid phase space is sampled from a fully classical simulation. We find that solvation effects on both triazole tautomeric equilibrium constants and piperidinol conformational equilibrium constants can be interpreted in terms of subtle differences in the local environment which can be seen in probability densities and radial distribution functions. Lower level calculations were performed for comparison and we conclude that the solvation thermodynamics can be predicted from a good classical model of solvent and solute molecules, but the implicit models that we tried are less successful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental neutron diffraction data and ab initio molecular dynamics simulation of the ionic liquid dimethylimidazolium chloride ([dmim]Cl) have provided a structural description of the system at the molecular level. However, partial radial distribution functions calculated from the latter, when compared to previous classical simulation results, highlight some limitations in the structural description offered by force fieldbased simulations. With the availability of ab initio data it is possible to improve the classical description of [dmim]Cl by using the force matching approach, and the strategy for fitting complex force fields in their original functional form is discussed. A self-consistent optimization method for the generation of classical potentials of general functional form is presented and applied, and a force field that better reproduces the observed first principles forces is obtained. When used in simulation, it predicts structural data which reproduces more faithfully that observed in the ab initio studies. Some possible refinements to the technique, its application, and the general suitability of common potential energy functions used within many ionic liquid force fields are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of linear scaling of the atomic charges of a reference potential on the structure, dynamics, and energetics of the ionic liquid 1,3-dimethylimidazolium chloride are investigated. Diffusion coefficients that span over four orders of magnitude are observed between the original model and a scaled model in which the ionic charges are +/- 0.5 e. While the three-dimensional structure of the liquid is less affected, the partial radial distribution functions change markedly-with the positive result that for ionic charges of +/- 0.7 e, an excellent agreement is observed with ab initio molecular dynamics data. Cohesive energy densities calculated from these partial-charge models are also in better agreement with those calculated from the ab initio data. We postulate that ionic-liquid models in which the ionic charges are assumed to be +/- 1 e overestimate the intermolecular attractions between ions, which results in overstructuring, slow dynamics, and increased cohesive energy densities. The use of scaled-charge sets may be of benefit in the simulation of these systems-especially when looking at properties beyond liquid structure-thus providing on alternative to computationally expensive polarisable force fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two semianalytical relations [Nature, 1996, 381, 137 and Phys. Rev. Lett. 2001, 87, 245901] predicting dynamical coefficients of simple liquids on the basis of structural properties have been tested by extensive molecular dynamics simulations for an idealized 2:1 model molten salt. In agreement with previous simulation studies, our results support the validity of the relation expressing the self-diffusion coefficient as a Function of the radial distribution functions for all thermodynamic conditions such that the system is in the ionic (ie., fully dissociated) liquid state. Deviations are apparent for high-density samples in the amorphous state and in the low-density, low-temperature range, when ions condense into AB(2) molecules. A similar relation predicting the ionic conductivity is only partially validated by our data. The simulation results, covering 210 distinct thermodynamic states, represent an extended database to tune and validate semianalytical theories of dynamical properties and provide a baseline for the interpretation of properties of more complex systems such as the room-temperature ionic liquids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The liquid state structure of the ionic liquid, 1-ethyl-3-methylimidazolium acetate, and the solute/solvent structure of glucose dissolved in the ionic liquid at a 1: 6 molar ratio have been investigated at 323 K by molecular dynamics simulations and neutron diffraction experiments using H/D isotopically substituted materials. Interactions between hydrogen-bond donating cation sites and polar, directional hydrogen-bond accepting acetate anions are examined. Ion-ion radial distribution functions for the neat ionic liquid, calculated from both MD and derived from the empirical potential structure refinement model to the experimental data, show the alternating shell-structure of anions around the cation, as anticipated. Spatial probability distributions reveal the main anion-to-cation features as in-plane interactions of anions with imidazolium ring hydrogens and cation-cation planar stacking. Interestingly, the presence of the polarised hydrogen-bond acceptor anion leads to increased anion-anion tail-tail structuring within each anion shell, indicating the onset of hydrophobic regions within the anion regions of the liquid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic solvents, such as cyclohexane, cyclohexene, methylcyclohexane, benzene and toluene, are widely used as both reagents and solvents in industrial processes. Despite the ubiquity of these liquids, the local structures that govern the chemical properties have not been studied extensively. Herein, we report neutron diffraction measurements on liquid cyclohexane, cyclohexene, methylcyclohexane, benzene and toluene at 298 K to obtain a detailed description of the local structure in these compounds. The radial distribution functions of the centres of the molecules, as well as the partial distribution functions for the double bond for cyclohexene and methyl group for methylcyclohexane and toluene have been calculated. Additionally, probability density functions and angular radial distribution functions were extracted to provide a full description of the local structure within the chosen liquids. Structural motifs are discussed and compared for all liquids, referring specifically to the functional group and aromaticity present in the different liquids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of 4-phenyl-benzaldehyde reveals the presence of a dimer linked by the C=O and C( 9)-H groups of adjacent molecules. In the liquid phase, the presence of C-(HO)-O-... bonded forms is revealed by both vibrational and NMR spectroscopy. A Delta H value of - 8.2 +/- 0.5 kJ mol(-1) for the dimerisation equilibrium is established from the temperature-dependent intensities of the bands assigned to the carbonyl-stretching modes. The NMR data suggest the preferential engagement of the C(2,6)-H and C(10/12)/C(11)-H groups as hydrogen bond donors, instead of the C(9)-H group. While ab initio calculations for the isolated dimers are unable to corroborate these NMR results, the radial distribution functions obtained from molecular dynamics simulations show a preference for C(2,6)-H and C(10/12)/C(11)-(HO)-O-... contacts relative to the C(9)-(HO)-O-... ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of complexes in solutions containing positively charged polyions (polycations) and a variable amount of negatively charged polyions (polyanions) has been investigated by Monte Carlo simulations. The polyions were described as flexible chains of charged hard spheres interacting through a screened Coulomb potential. The systems were analyzed in terms of cluster compositions, structure factors, and radial distribution functions. At 50% charge equivalence or less, complexes involving two polycations and one polyanion were frequent, while closer to charge equivalence, larger clusters were formed. Small and neutral complexes dominated the solution at charge equivalence in a monodisperse system, while larger clusters again dominated the solution when the polyions were made polydisperse. The cluster composition and solution structure were also examined as functions of added salt by varying the electrostatic screening length. The observed formation of clusters could be rationalized by a few simple rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of complexes appearing in solutions containing oppositely charged polyelectrolytes has been investigated by Monte Carlo simulations using two different models. The polyions are described as flexible chains of 20 connected charged hard spheres immersed in a homogenous dielectric background representing water. The small ions are either explicitly included or their effect described by using a screened Coulomb potential. The simulated solutions contained 10 positively charged polyions with 0, 2, or 5 negatively charged polyions and the respective counterions. Two different linear charge densities were considered, and structure factors, radial distribution functions, and polyion extensions were determined. A redistribution of positively charged polyions involving strong complexes formed between the oppositely charged polyions appeared as the number of negatively charged polyions was increased. The nature of the complexes was found to depend on the linear charge density of the chains. The simplified model involving the screened Coulomb potential gave qualitatively similar results as the model with explicit small ions. Finally, owing to the complex formation, the sampling in configurational space is nontrivial, and the efficiency of different trial moves was examined.