987 resultados para Radar Braking Systems.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic aperture radar (SAR) is a powerful tool for mapping and remote sensing. The theory and operation of SAR have seen a period of intense activity in recent years. This paper attempts to review some of the more advanced topics studied in connection with modern SAR systems based on digital processing. Following a brief review of the principles involved in the operation of SAR, attention is focussed on special topics such as advanced SAR modelling and focussing techniques, in particular clutterlock and autofocus, Doppler centroid (DC) estimation methods involving seismic migration technique, moving target imaging, bistatic radar imaging, effects of system nonlinearities, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radar services are occasionally affected by wind farms. This paper presents a comprehensive description of the effects that a wind farm may cause on the different radar services, and it compiles a review of the recent research results regarding the mitigation techniques to minimize this impact. Mitigation techniques to be applied at the wind farm and on the radar systems are described. The development of thorough impact studies before the wind farm is installed is presented as the best way to analyze in advance the potential for interference, and subsequently identify the possible solutions to allow the coexistence of wind farms and radar services.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous research has shown that hydraulic systems offer potentially the lightest and smallest regenerative braking technology for heavy goods vehicles. This paper takes the most practical embodiment of a hydraulic system for an articulated urban delivery vehicle and investigates the best specification for the various components, based on a simulated stop-start cycle. The potential energy saving is quantified. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near-space, defined as the altitude region between 20 and 100 km, offers many capabilities that are not accessible for low Earth-orbit (LEO) satellites or airplanes because it is above storm and not constrained by orbital mechanics and high fuel consumption. Hence, a high flying speed can be obtained for the maneuvering vehicles operating in near-space. This offers a promising solution to simultaneous high-resolution and wide-swath synthetic aperture radar (SAR) imaging. As such, one near-space wide-swath SAR imaging technique is presented in this letter. The system configuration, signal model, and imaging scheme are described. An example near-space SAR system is designed, and its imaging performance is analyzed. Simulation results show that near-space maneuvering vehicle SAR indeed seems to be a promising solution to wide-swath SAR imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. The segmentation is performed by three "copies" of the BCS and FCS, of small, medium, and large scales, wherein the "short-range" and "long-range" interactions within each scale occur over smaller or larger distances, corresponding to the size of the early filters of each scale. A diffusive filling-in operation within the segmented regions at each scale produces coherent surface representations. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to two large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. Finally, a diffusive filling-in operation within the segmented regions produces coherent visible structures. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems, which shows promise in home healthcare, rescue, and security applications. In this paper, we first present a multi-ray propagation model for UWB signal, which is traveling through the human thorax and is reflected on the air/dry-skin/fat/muscle interfaces. A geometry-based statistical channel model is then developed for simulating the reception of UWB signals in the indoor propagation environment. This model enables replication of time-varying multipath profiles due to the displacement of a human chest. Subsequently, a UWB distributed cognitive radar system (UWB-DCRS) is developed for the robust detection of chest cavity motion and the accurate estimation of respiration rate. The analytical framework can serve as a basis in the planning and evaluation of future measurement programs. We also provide a case study on how the antenna beamwidth affects the estimation of respiration rate based on the proposed propagation models and system architecture

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper, chosen as a best paper from the 2005 SAMOS Workshop on Computer Systems: describes the for the first time the major Abhainn project for automated system level design of embedded signal processing systems. In particular, this describes four key novelties: novel algorithm modelling techniques for DSP systems, automated implementation realisation, algorithm transformation for system optimisation and automated inter-processor communication. This is applied to two complex systems: a radar and sonar system. In both cases technology which allows non-experts to automatically create low-overhead, high performance embedded signal processing systems is exhibited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overwintering diving ducks at Lough Neagh have declined dramatically in recent years, but it has been suggested that on-to-offshore redistribution may have led to an underestimate of numbers. Most species feed nocturnally and their distribution at night is unknown. We used radar and visual observations from on board commercial sand barges to determine the diurnal distribution of diving duck flocks in an effort to assess the feasibility of using standard
boat-mounted radar to describe their nocturnal feeding distribution. Sand barge radar was poor in identifying flocks compared to independent visual observations as it was sensitive to interference by waves during windy conditions. However, visual observations were useful in describing diurnal distribution. Sand barges were on average 1.5km from shore when a flock of diving ducks was observed and the probability of detection declined with distance from shore. This supports the reliability of shore-based counts in monitoring and surveillance. Given the poor performance of commercially available boatmounted radar systems, we recommend the use of specialised terrestrial Bird Detecting Radar to determine the movements of diving ducks at Lough Neagh.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L X, remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L X/L bol). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study is to understand the characteristics and properties of different wave modes and the vertical circulation pattern in the troposphere and lower stratosphere over Indian region using data obtained from the Indian Mesosphere-Stratosphere Troposphere (MST) radar, National Center for Environmental Prediction/National Centres of Atmospheric Research (NCEP/NCAR) reanalysed data and radiosonde observations.Studies on the vertical motion in monsoon Hadley circulation are carried out and the results are discussed . From the analysis of MST radar data, an overall picture of vertical motion of air over Indian region is explained and noted that there exists sinking motion both during winter and summer. Besides, the study shows that there is an anomalous northerly wind in the troposphere over the southern peninsular region during southwest monsoon season.The outcome of the study on intrusion of mid-latitude upper tropospheric trough and associated synoptic-scale vertical velocity over the tropical Indian latitudes are reported and discussed . It shows that there is interaction between north Indian latitudes and tropical easterly region, when there is an eastward movement of Western Disturbance across the country. It explains the strengthening of westerlies and a change of winter westerlies into easterlies in the tropical troposphere and lower stratosphere. The divergence field computed over the MST radar station shows intensification in the downward motion in association with the synoptic systems of the northwest Indian region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of the thesis is to improve the state of knowledge and understanding of the physical structure of the TMCS and its short range prediction. The present study principally addresses the fine structure, dynamics and microphysics of severe convective storms.The structure and dynamics of the Tropical cloud clusters over Indian region is not well understood. The observational cases discussed in the thesis are limited to the temperature and humidity observations. We propose a mesoscale observational network along with all the available Doppler radars and other conventional and non—conventional observations. Simultaneous observations with DWR, VHF and UHF radars of the same cloud system will provide new insight into the dynamics and microphysics of the clouds. More cases have to be studied in detail to obtain climatology of the storm type passing over tropical Indian region. These observational data sets provide wide variety of information to be assimilated to the mesoscale data assimilation system and can be used to force CSRM.The gravity wave generation and stratosphere troposphere exchange (STE) processes associated with convection gained a great deal of attention to modem science and meteorologist. Round the clock observations using VHF and UHF radars along with supplementary data sets like DWR, satellite, GPS/Radiosondes, meteorological rockets and aircrafl observations is needed to explore the role of convection and associated energetics in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antennas play an important role in determining the characteristics of any electronic system which depends on free space as the propagation medium. Basically, an antenna can be considered as the connecting link between free space and the transmitter or receiver. For radar and navigational purposes the directional properties of an antenna is its most basic requirement as it determines the distribution of radiated energy. Hence the study of directional properties of antennas has got special significance and several useful applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous low - pressure systems form in the Arabian Sea and Bay of Bengal. These low-pressure systems are highly useful in bringing the rainfall over the Indian sub continent. The developments of these systems are accompanied by the reduction in air temperature and an increase in atmospheric humidity. The radio refractivity, which is a function of the atmospheric pressure, temperature and humidity, also changes following the development of these systems. Variation of radio refractive index and its vertical gradient are analysed for many low pressure systems formed over the Arabian Sea and Bay of Bengal. It is found that the atmosphere becomes super refractive associated with the formation of these systems, caused by the increase in humidity and decrease in temperature. The maximum gradient is observed near the surface layers, especially in the lowest 1 km. Super refraction leads to increased radar detection range and extension of radio horizon