67 resultados para RUBBERS
Resumo:
One of the main objectives of this study was to functionalise various rubbers (i.e. ethylene propylene copolymer (EP), ethylene propylene diene terpolymer (EPDM), and natural rubber (NR)) using functional monomers, maleic anhydride (MA) and glycidyl methacrylate (GMA), via reactive processing routes. The functionalisation of the rubber was carried out via different reactive processing methods in an internal mixer. GMA was free-radically grafted onto EP and EPDM in the melt state in the absence and presence of a comonomer, trimethylolpropane triacrylate (TRlS). To optinuse the grafting conditions and the compositions, the effects of various paranleters on the grafting yields and the extent of side reactions were investigated. Precipitation method and Soxhlet extraction method was established to purifY the GMA modified rubbers and the grafting degree was determined by FTIR and titration. It was found that without TRlS the grafting degree of GMA increased with increasing peroxide concentration. However, grafting was low and the homopolymerisation of GMA and crosslinking of the polymers were identified as the main side reactions competing with the desired grafting reaction for EP and EPDM, respectively. The use of the tri-functional comonomer, TRlS, was shown to greatly enhance the GMA grafting and reduce the side reactions in terms of the higher GMA grafting degree, less alteration of the rheological properties of the polymer substrates and very little formation of polyGMA. The grafting mechanisms were investigated. MA was grafted onto NR using both thermal initiation and peroxide initiation. The results showed clearly that the reaction of MA with NR could be thermally initiated above 140°C in the absence of peroxide. At a preferable temperature of 200°C, the grafting degree was increased with increasing MA concentration. The grafting reaction could also be initiated with peroxide. It was found that 2,5-dimethyl-2,5-bis(ter-butylproxy) hexane (TIOI) was a suitable peroxide to initiate the reaction efficiently above I50°C. The second objective of the work was to utilize the functionalised rubbers in a second step to achieve an in-situ compatibilisation of blends based on poly(ethylene terephthalate) (PET), in particular, with GMA-grafted-EP and -EPDM and the reactive blending was carried out in an internal mixer. The effects of GMA grafting degree, viscosities of GMAgrafted- EP and -EPDM and the presence of polyGMA in the rubber samples on the compatibilisation of PET blends in terms of morphology, dynamical mechanical properties and tensile properties were investigated. It was found that the GMA modified rubbers were very efficient in compatibilising the PET blends and this was supported by the much finer morphology and the better tensile properties. The evidence obtained from the analysis of the PET blends strongly supports the existence of the copolymers through the interfacial reactions between the grafted epoxy group in the GMA modified rubber and the terminal groups of PET in the blends.
Resumo:
Some aspects of fatigue failure in rubbers have been examined. Scanning electron micrographs of the surface exposed by the failure confirm the incremental, crack-propagation nature, of the fatigue process. Many other features of the failure surface have been identified and related to this process. The complicating effect of a reinforcing filler has also been investigated. The fatigue resistance of rubber test-pieces deformed in simple tension was measured as a function of frequency and temperature. This showed that an increase in frequency was equivalent to a decrease in temperature; for an amorphous unfilled rubber the time and temperature effects of crystallisation and fillers on the validity of this transformation is considered. This transformation indicates that hysteresis plays an important part in the fatigue process. Torsional pendulum measurements were used to demonstrate the dependence of the fatigue life on the mechanical damping. An apparatus was developed to measure the hysteresial energy loss directly at deformations, rates of deformation and temperatures consistent with a typical fatigue test. Measurements made with this apparatus are compared with fatigue values and a quantitative relationship is suggested describing fatigue, in terms of the energy lost per unit energy input in a cycle of a fatigue test.
Resumo:
The improved performance of hydraulic binders, the base of Portland cement, consists in the careful selection and application of materials that promote greater durability and reduced maintenance costs There is a wide variety of chemical additives used in Portland cement slurries for cementing oil wells. These are designed to work in temperatures below 0 ° C (frozen areas of land) to 300 ° C (thermal recovery wells and geothermal); pressure ranges near ambient pressure (in shallow wells) to greater than 200 MPa (in deep wells). Thus, additives make possible the adaptation of the cement slurries for application under various conditions. Among the materials used in Portland cement slurry, for oil wells, the materials with nanometer scale have been applied with good results. The nanossílica, formed by a dispersion of SiO2 particles, in the nanometer scale, when used in cement systems improves the plastic characteristics and mechanical properties of the hardened material. This dispersion is used commercially as filler material, modifier of rheological properties and / or in recovery processes construction. It is also used in many product formulations such as paints, plastics, synthetic rubbers, adhesives, sealants and insulating materials Based on the above, this study aims to evaluate the performance of nanossílica as extender additive and improver of the performance of cement slurries subjected to low temperatures (5 ° C ± 3 ° C) for application to early stages of marine oil wells. Cement slurries were formulated, with densities 11.0;12.0 and 13.0 ppg, and concentrations of 0; 0.5, 1.0 and 1.5%. The cement slurries were subjected to cold temperatures (5 ° C ± 3 ° C), and its evaluation performed by tests rheological stability, free water and compressive strength in accordance with the procedures set by API SPEC 10A. Thermal characterization tests (TG / DTA) and crystallographic (XRD) were also performed. The use of nanossílica promoted reduction of 30% of the volume of free water and increased compression resistance value of 54.2% with respect to the default cement slurry. Therefore, nanossílica presented as a promising material for use in cement slurries used in the early stages of low-temperature oil wells
Resumo:
The Human race of our century is in gluttonous search for novel engineering products which led to a skyrocketed progress in research and fabrication of filled polymers. Recently, a big window has been opened up for speciality polymers especially elastomers with promising properties. Among the many reasons why rubbers are widely used in the process industries, three are considered as important. Firstly, rubbers operate in a variety of environments and possess usable ranges of deformity and durability and can be exploited through suitable and more or less conventional equipment design principles. Secondly, rubber is an eminently suitable construction material for protection against corrosion in the chemical plant and equipment against various corrosive chemicals as, acids and alkalies and if property tailored, can shield ionising radiations as X-rays and gamma rays in medical industry, with minimum maintenance lower down time, negligible corrosion and a preferred choice for aggressive corroding and ionising environment. Thirdly, rubber can readily and hastily, and at a relatively lower cost, be converted into serviceable products, having intricate shapes and dimensions. In a century’s gap, large employment of flexible polymer materials in the different segments of industry has stimulated the development of new materials with special properties, which paved its way to the synthesis of various nanoscale materials. At nano scale, one makes an entry into a world where multidisciplinary sciences meet and utilises the previously unapproached infinitesimal length scale, having dimension which measure upto one billionth of a meter, to create novel properties. The nano fillers augment the elastomers properties in an astonishing fashion due to their multifunctional nature and unprecedented properties have been exhibited by these polymer-nanocomposites just to beat the shortcomings of traditional micro composites. The current research aims to investigate the possibility of using synthesised nano barium sulphate for fabricating elastomer-based nanocomposites and thereby imparting several properties to the rubber. In this thesis, nano materials, their synthesis, structure, properties and applications are studied. The properties of barium sulphate like chemical resistance and radiopacity have been utilized in the present study and is imparted to the elastomers by preparing composites.
Resumo:
Résumé: Le développement de l’industrie des polymères fourni de plus en plus de choix pour la formulation de matériaux pour les couvre-planchers. Les caoutchoucs, le PVC et le linoleum sont les polymères habituellement utilisés dans l’industrie des couvre-planchers. Ce projet répond à un problème de facilité de nettoyage des couvre-planchers de caoutchouc qui sont reconnus pour être mous, collants et ayant une surface rugueuse. L’INTRODUCTION couvrira l’état actuel de la recherche sur les couvre-planchers, surtout en regard au problème de la «nettoyabilité». La théorie pertinente et les informations générales sur les polymères, les composites polymériques et la science des surfaces seront introduites au CHAPITRE 1. Ensuite, le CHAPITRE 2 couvrira la méthode utilisée pour déterminer la nettoyabilité, l’évaluation des résultats ainsi que l’équipement utilise. Le CHAPITRE 3, discutera des premières expériences sur l’effet de la mouillabilité, la rugosité et la dureté sur la facilité de nettoyage des polymères purs. Plusieurs polymères ayant des surfaces plus ou moins hydrophobes seront investigués afin d’observer leur effet sur la nettoyabilité. L’effet de la rugosité sur la nettoyabilité sera investigué en imprimant une rugosité définie lors du moulage des échantillons; l’influence de la dureté sera également étudiée. Ensuite, un modèle de salissage/nettoyage sera établi à partir de nos résultats et observations afin de rationaliser les facteurs, ou « règles », qui détrminent la facilité de nettoyage des surfaces. Finalement, la réticulation au peroxyde sera étudiée comme une méthode de modification des polymères dans le but d’améliorer leur nettoyabilité; un mécanisme découlant des résultats de ces études sera présenté. Le CHAPITRE 4 étendra cette recherche aux mélanges de polymères; ces derniers servent habituellement à optimiser la performance des polymères purs. Dans ce chapitre, les mêmes tests discutés dans le CHAPITRE 3 seront utilisés pour vérifier le modèle de nettoyabilité établi ci-haut. De plus, l’influence de la non-miscibilité des mélanges de polymères sera discutée du point de vue de la thermodynamique (DSC) et de la morphologie (MEB). L’utilisation de la réticulation par peroxyde sera étudié dans les mélanges EPDM/ (E-ran-MAA(Zn)-ran-BuMA) afin d’améliorer la compatibilité de ces polymères. Les effets du dosage en agent de réticulation et du temps de cuisson seront également examinés. Finalement, un compatibilisant pré-réticulé a été développé pour les mélanges ternaires EPDM/ (E-ran-MAA(Zn)-ran-BuMA)/ HSR; son effet sur la nettoyabilité et sur la morphologie du mélange sera exposé.
Resumo:
Isocyanates are included into a class with an extreme commercial importance because their use in the manufacture of polyurethanes. Polyurethanes are used in several applications such as adhesives, coatings, foams, thermoplastics resins, printing inks, foundry moulds and rubbers. Agglomerated cork stoppers are currently used for still wines, semi-sparkle and gaseous wines, beer and cider. Methylene diphenyl diisocyanate (MDI) is presently the isocyanate used in the production of polyurethane based adhesive in use due to its lowest toxicity comparing with toluene diisocyanate (TDI) previously employed. However, free monomeric TDI or MDI, depending on the based polyurethane, can migrate from agglomerated cork stoppers to beverages therefore it needs to be under control. The presence of these compounds are usually investigated by HPLC with Fluorescence or UV-Vis detector depending on the derivatising agent. Ultra Performance Liquid Chromatography with Diode Array Detector (UPLC-DAD) method is replacing HPLC. The objective of this study is to determine which method is better to analyze isocyanates from agglomerated cork stoppers, essentially TDI to quantify its monomer. A Design of Experiments (DOE) with three factors, column temperature, flow and solvent, at two levels was done. Eight experiments with three replications and two repetitions were developed. Through an ANOVA the significance of the factors was evaluated and the best level’s factors were selected. As the TDI has two isomers and in this method these two isomers were not always separated an ANOVA with results of resolution between peaks was performed. The Design of Experiments reveals to be a suitable statistical tool to determine the best conditions to quantified free isocyanates from agglomerated cork stoppers to real foodstuff. The best level’s factors to maximize area was column temperature at 30ºC, flow to 0,3 mL/min and solvent 0,1% Ammonium Acetate, to maximize resolution was the same except the solvent that was 0,01% Ammonium Acetate.