950 resultados para RESOLUTION INFRARED-SPECTRA
Resumo:
Accompanied by "First supplement." (iv, 112 p. 28 cm.) Published: Philadelphia [c1963]--ASTM special publication no. 333A.
Resumo:
Includes bibliographical references.
Resumo:
The metallicity distribution and abundance ratios of the Galactic bulge are reviewed. Issues raised by recent work of different groups, in particular the high metallicity end, the overabundance of alpha-elements in the bulge relative to the thick disc and the measurement of giants versus dwarfs, are discussed. Abundances in the old moderately metal-poor bulge globular clusters are described.
Resumo:
Determining the properties and integrity of subchondral bone in the developmental stages of osteoarthritis, especially in a form that can facilitate real-time characterization for diagnostic and decision-making purposes, is still a matter for research and development. This paper presents relationships between near infrared absorption spectra and properties of subchondral bone obtained from 3 models of osteoarthritic degeneration induced in laboratory rats via: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACL); and (iii) intra-articular injection of mono-ido-acetate (1 mg) (MIA), in the right knee joint, with 12 rats per model group (N = 36). After 8 weeks, the animals were sacrificed and knee joints were collected. A custom-made diffuse reflectance NIR probe of diameter 5 mm was placed on the tibial surface and spectral data were acquired from each specimen in the wavenumber range 4000–12 500 cm− 1. After spectral acquisition, micro computed tomography (micro-CT) was performed on the samples and subchondral bone parameters namely: bone volume (BV) and bone mineral density (BMD) were extracted from the micro-CT data. Statistical correlation was then conducted between these parameters and regions of the near infrared spectra using multivariate techniques including principal component analysis (PCA), discriminant analysis (DA), and partial least squares (PLS) regression. Statistically significant linear correlations were found between the near infrared absorption spectra and subchondral bone BMD (R2 = 98.84%) and BV (R2 = 97.87%). In conclusion, near infrared spectroscopic probing can be used to detect, qualify and quantify changes in the composition of the subchondral bone, and could potentially assist in distinguishing healthy from OA bone as demonstrated with our laboratory rat models.
Resumo:
The infrared spectra of 2,4-dithiobiuret(DTB), N-deuterated dithiobiuret(DTB-d5) and the laser Raman spectrum of DTB are reported. Normal coordinate treatments of DTB and DTB-d5 have been carried out to aid the assignment of the vibrational frequencies. A trans—cis conformation is favoured for DTB molecule in the solid state.
Resumo:
We report gas phase mid-infrared spectra of 1- and 2- methyl naphthalenes at 0.2 cm(-1) resolution. Assignment of observed bands have been made using scaled quantum mechanical (SQM) calculations where the force fields rather the frequencies are scaled to find a close fit between observed and calculated bands. The structure of the molecules has been optimized using B3LYP level of theory in conjunction with standard 6-311G** basis set to obtain the harmonic frequencies. Using the force constants in Cartesian coordinates from the Gaussian output, scaled force field calculations are carried out using a modified version of the UMAT program in the QCPE package. Potential energy distributions of the normal modes obtained from such calculations helped us assign the observed bands and identify the unique features of the spectra of 1- and 2-MNs which are important for their isomeric identification.
Resumo:
TITLE: The normal co-ordinate analysis, vibrational spectra and theoretical infrared intensities of some thiocarbonyl halides. AUTHOR: J. L. Brema SUPERVISOR: Dr. D. C. Moule NUMBER OF PAGES: 89 ABSTRACT: The vibrational assignment of the five-in-plane fundamental modes of CSClBr has been made on the basis of infrared gas phase and liquid Raman spectral analyses to supplement our earlier vibrational studies. Even though the one out-of-plane fundamental was not observed spectroscopically an attempt has been made to predict its frequency. The vibrational spectra contained impurity bands and the CSClBr assignment was made only after a thorough analysis of the impurities themselves. A normal co-ordinate analysis calculation was performed assuming a Urey-Bradley force field. This calculation yielded the fundamental frequencies in good agreement with those observed after refinement of the originally transferred force constants. The theoretical frequencies are the eigenvalues of the secular equation and the calculation also gave the corresponding eigenvectors in the form of the very important LLj matrix. The [l] matrix is the transfoirmation between internal co-ordinates and normal co-ordinates and it is essential for Franck-Condon calculations on electronically excited molecules and for infrared Integrated band intensity studies. Using a self-consistent molecular orbital calculation termed "complete neglect of differential overlap" (CNDO/2) , theoretical values of equilibrium bond lengths and angleswere calcuted for a series of carbonyl and thlocarbonyl molecules. From these calculations valence force field force constants were also determined but with limited success. With the CNIX)/2 method theoretical dipole moment derivatives with respect to symmetrized internal co-ordinates were calculated and the results should be useful in a correlation with experimentally determined values.
Resumo:
In this paper we show that the orthorhombic phase of FeSi2 (stable at room temperature) displays a sizable anisotropy in the infrared spectra, with minor effects in the Raman data too. This fact is not trivial at all, since the crystal structure corresponds to a moderate distortion of the fluorite symmetry. Our analysis is carried out on small single crystals grown by flux transport, through polarization-resolved far-infrared reflectivity and Raman measurements. Their interpretation has been obtained by means of the simulated spectra with tight-binding molecular dynamics.
Resumo:
Infrared spectra of the trans and the cis isomers of nitrous acid, both HONO and DONO, have been observed in the gas phase using a Fourier transform interferometer with a resolution of about 0.05 cm−1 from 4000 to 500 cm−1. Rotational analyses are reported on eleven of the fundamentals and some overtones.
Resumo:
High-resolution infrared and near-infrared spectra have been observed for more than 80 overtone bands of the HCCF molecule, including two CH stretching overtones in the visible region. Many of these have been analysed, and many more are in the course of analysis and will be reported later. All fundamentals have now been rotationally analysed and the equilibrium rotational constant determined. These data provide a testing ground for anharmonic force-field analyses, and they are discussed briefly in this connection.
Resumo:
High-resolution Fourier-transform infrared spectra have been recorded and analyzed for the nu4, nu5, and nu6 fundamental bands of trans-HONO, and for the nu4 fundamental of cis-HONO. The spectral resolution was better than 0.01/cm, and the rotational structure has been analyzed to give improved ground-state and excited-state rotational constants, with a standard deviation of the fit to the observed line positions of around 0.0006/cm. Two Coriolis interactions have been analyzed between the nu5 and nu6 bands of trans-HONO.
Resumo:
Infrared spectra of the two stretching fundamentals of both HBS and DBS have been observed, using a continuous flow system through a multiple reflection long path cell at a pressure around 1 Torr and a Nicolet Fourier Transform spectrometer with a resolution of about 0•1 cm-1. The v3 BS stretching fundamental of DBS, near 1140 cm-1, is observed in strong Fermi resonance with the overtone of the bend 2v2. The bending fundamental v2 has not been observed and must be a very weak band. The analysis of the results in conjunction with earlier work gives the equilibrium structure (re(BH) = 1•1698(12) , re(BS) = 1•5978(3) ) and the harmonic and anharmonic force field.
Resumo:
The effects of ℓ-type resonance on rovibrational bands in infrared spectra are reviewed. Observed spectra are compared with computer-simulated spectra obtained by solving the Hamiltonian matrix numerically and calculating the true (perturbed) wavenumber and intensity of each line in the band. The most obvious effects in the spectra are shown to result from intensity perturbations rather than line-shifts; in oblate symmetric tops the Q branch structure near the band center may show anomalies due to ℓ-resonance even at quite low resolution and even when the accidental resonance is not very exact. Numerical values of ℓ-doubling constants are obtained for several cyclopropane bands by comparing observed band contours at about 0.2-cm−1 resolution with computed contours. Although the constants are not determined with great precision, the sign of the ℓ-doubling constants is determined unambiguously.
Resumo:
High-resolution Fourier transform infrared spectra have been recorded and analyzed for the ν3, ν4, ν5, and ν6 fundamental bands of trans-DONO, and for the ν4 fundamental of cis-DONO. The spectral resolution was better than 0.01 cm−1, and the bands have been fitted using an asymmetric top Hamiltonian with a standard deviation of around 0.0006 cm−1.
Resumo:
Experimentally and theoretically determined infrared spectra are reported for a series of straight-chain perfluorocarbons: C2F6, C3F8, C4F10, C5F12, C6F14, and C8F18. Theoretical spectra were determined using both density functional (DFT) and ab initio methods. Radiative efficiencies (REs) were determined using the method of Pinnock et al. (1995) and combined with atmospheric lifetimes from the literature to determine global warming potentials (GWPs). Theoretically determined absorption cross sections were within 10% of experimentally determined values. Despite being much less computationally expensive, DFT calculations were generally found to perform better than ab initio methods. There is a strong wavenumber dependence of radiative forcing in the region of the fundamental C-F vibration, and small differences in wavelength between band positions determined by theory and experiment have a significant impact on the REs. We apply an empirical correction to the theoretical spectra and then test this correction on a number of branched chain and cyclic perfluoroalkanes. We then compute absorption cross sections, REs, and GWPs for an additional set of perfluoroalkenes.