986 resultados para RELATIVISTIC WAVE-EQUATIONS
Resumo:
We propose a united theory that describes the two-center recording system by taking scattering noise into account. The temporal evolution of the signal-to-noise ratio in doubly doped photorefractive crystals is described based on jointly solving material equations and coupled-wave equations with the fourth-order Runge-Kutta method. Roles of microcosmic optical parameters of dopants on the signal-to-noise ratio are discussed in detail. The theoretical results can confirm and predict experimental results. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
By jointly solving two-centre material equations with a nonzero external electric field and coupled-wave equations, we have numerically studied the dependence of the non-volatile holographic recording in LiNbO3:Ce:Cu crystals on the external electric field. The dominative photovoltaic effect of the non-volatile holographic recording in doubly doped LiNbO3 crystals is directly verified. And an external electric field that is applied in the positive direction along the c-axis (or a large one in the negative direction of the c-axis) in the recording phase and another one that is applied in the negative direction of the c-axis in the fixing phase are both proved to benefit strong photorefractive performances. Experimental verifications are given with a small electric field applied externally.
Resumo:
提出了一种在双掺杂铌酸锂晶体中用调制的双紫外光进行非挥发全息记录的方法。与通常的用紫外光敏化的非挥发全息记录相比,这种方法可以大幅度地提高光栅强度和记录灵敏度。联立双中心物质方程和双光束耦合波方程,数值分析了光栅强度和衍射效率随时间的变化并讨论了掺杂浓度和记录光强对紫外光非挥发全息记录机制下光折变效应的影响。研究发现,紫外光记录得到的深浅中心的光栅具有相同的相位,总的光栅(深浅中心光栅的叠加)强度为两光栅强度之和,固定过程中深中心的光栅得到增强;增大深浅中心掺杂的浓度可以提高光栅强度,增大记录紫外光的光强
Resumo:
We have investigated ultraviolet (UV) photorefractive effect of lithium niobate doubly doped with Ce and Cu. It is found the diffraction efficiency shows oscillating behavior Under UV-1ight-recording. A model in which electrons and holes can be excited from impurity centers in the UV region is proposed to study the oscillatory behavior of the diffraction efficiency. Oil the basis of the material equations and the coupled-wave equations, we found that the oscillatory behavior is due to the oscillation of the relative spatial phase shift Phi. And the electron-hole competition may cause the oscillation of the relative spatial phase shift. A switch point from electron grating to hole grating is chosen to realize nonvolatile readout by a red light with high sensitivity (0.4 cm/J). (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
We obtain analytical solutions of the coupled wave equations that describe the Bragg diffraction of ultrashort pulsed finite beams by a thick planar grating, using two-dimensional coupled wave theory. The diffraction properties for the case of an ultrashort pulsed finite beam with Gaussian profiles in both the time and spatial domains are investigated. The spectral bandwidth of the diffracted beam, the Bragg selectivity bandwidth and the diffraction efficiency of the volume grating are influenced by the geometry parameter and the input bandwidth. Therefore extra attention should be paid to designing optical elements based on volume gratings for use with ultrashort pulsed waves in applications of pulse shaping and processing.
Resumo:
The frequency range of interest for ground vibration from underground urban railways is approximately 20 to 100 Hz. For typical soils, the wavelengths of ground vibration in this frequency range are of the order of the spacing of train axles, the tunnel diameter and the distance from the tunnel to nearby building foundations. For accurate modelling, the interactions between these entities therefore have to be taken into account. This paper describes an analytical three-dimensional model for the dynamics of a deep underground railway tunnel of circular cross-section. The tunnel is conceptualised as an infinitely long, thin cylindrical shell surrounded by soil of infinite radial extent. The soil is modelled by means of the wave equations for an elastic continuum. The coupled problem is solved in the frequency domain by Fourier decomposition into ring modes circumferentially and a Fourier transform into the wavenumber domain longitudinally. Numerical results for the tunnel and soil responses due to a normal point load applied to the tunnel invert are presented. The tunnel model is suitable for use in combination with track models to calculate the ground vibration due to excitation by running trains and to evaluate different track configurations. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Laterally-coupled distributed feedback (LC-DFB) laser diodes made without an epitaxial re-growth process have the advantage of a simple fabrication process. In this paper, two-dimensional optical field distribution of the fundamental quasi TE (transverse electric) mode is calculated by means of a semivectorial finite-difference method (SV-FDM). The dependence of the effective coupling coefficient (kappa(eff)) on the dutycycle of first-, second- and third-order LC-DFB LDs is investigated using modified coupled wave equations.
Resumo:
Coupling coefficient is an important parameter for distributed feedback lasers. Modified coupled-wave equations are used to calculate the effect of grating shape on coupling coefficient of the second-order gratings. Corresponding devices demonstrate that the maximum kink-free power per facet reaches 50 mW and the sidemode suppression ratio is 36 dB.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, a joint statistical distribution of two-point sea surface elevations is derived by using the characteristic function expansion method. It is found that the joint distribution depends on five parameters. These five parameters can all be determined by the water depth, the relative position of two points and the wave-number spectrum of ocean waves. As an illustrative example, for fully developed wind-generated sea, the parameters that appeared in the joint distribution are calculated for various wind speeds, water depths and relative positions of two points by using the Donelan and Pierson spectrum and the nonlinear effects of sea waves on the joint distribution are studied. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth- integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, a fully developed wind-generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.
Resumo:
Along with the widespread and in-depth applications in petroleum prospecting and development, the seismic modeling and migration technologies are proposed with a higher requirement by oil industrial, and the related practical demand is getting more and more urgent. Based on theories of modeling and migration methods for wave equation, both related with velocity model, I thoroughly research and develop some methods for the goal of highly effective and practical in this dissertation. In the first part, this dissertation probes into the layout designing by wave equations modeling, focusing on the target-oriented layout designing method guided by wave equation modeling in complicated structure areas. It is implemented by using the fourth order staggered grid finite difference (FD) method in velocity-stress 2D acoustic wave equations plus perfectly matched layer (PML) absorbing boundary condition. To design target-oriented layout: (a) match the synthetic record on the surface with events of subsurface structures by analyzing the snapshots of theoretical model; (b) determine the shot-gather distance by tracking the events of target areas and measuring the receiving range when it reaches the surface; (c) restrict the range of valid shot-gather distance by drawing seismic windows in single shot records; (d) choose the best trace distance by comparing the resolution of prospecting targets from the simulated records with different trace distance. Eventually, we obtained the observation system parameters, which achieve the design requirements. In the second part, this dissertation presents the practical method to improve the 3D Fourier Finite Difference (FFD) migration, and carefully analyzes all the factors which influence 3D FFD migration’s efficiency. In which, one of the most important parameters of migration is the extrapolating step. This dissertation presents an efficient 3D FFD migration algorithm, which use FFD propagator to extrapolate wavefields over big layers, and use Born-Kirchhoff interpolator to image wavefields over small layers between the big ones. Finally, I show the effectiveness of this hybrid migration method by comparing migration results from 3D SEG/EAGE model with different methods.
Resumo:
In this paper, we propose a new numerical modeling method – Convolutional Forsyte Polynomial Differentiator (CFPD), aimed at simulating seismic wave propagation in complex media with high efficiency and accuracy individually owned by short-scheme finite differentiator and general convolutional polynomial method. By adjusting the operator length and optimizing the operator coefficient, both global and local informations can be easily incorporated into the wavefield which is important to invert the undersurface geological structure. The key issue in this paper is to introduce the convolutional differentiator based on Forsyte generalized orthogonal polynomial in mathematics into the spatial differentiation of the first velocity-stress equation. To match the high accuracy of the spatial differentiator, this method in the time coordinate adopts staggered grid finite difference instead of conventional finite difference to model seismic wave propagation in heterogeneous media. To attenuate the reflection artifacts caused by artificial boundary, Perfectly Matched Layer (PML) absorbing boundary is also being considered in the method to deal with boundary problem due to its advantage of automatically handling large-angle emission. The PML formula for acoustic equation and first-order velocity-stress equation are also derived in this paper. There is little difference to implement the PML boundary condition in all kind of wave equations, but in Biot media, special attenuation factors should be taken. Numerical results demonstrate that the PML boundary condition is better than Cerjan absorbing boundary condition which makes it more suitable to hand the artificial boundary reflection. Based on the theories of anisotropy, Biot two-phase media and viscous-elasticity, this paper constructs the constitutive relationship for viscous-elastic and two-phase media, and further derives the first-order velocity-stress equation for 3D viscous-elastic and two-phase media. Numerical modeling using CFPD method is carried out in the above-mentioned media. The results modeled in the viscous-elastic media and the anisotropic pore elastic media can better explain wave phenomena of the true earth media, and can also prove that CFPD is a useful numerical tool to study the wave propagation in complex media.
Resumo:
A major impetus to study the rough surface and complex structure in near surface model is because accuracy of seismic observation and geophysical prospecting can be improved. Wave theory study about fluid-satuated porous media has important significance for some scientific problems, such as explore underground resources, study of earth's internal structure, and structure response of multi-phase porous soil under dynamic and seismic effect. Seismic wave numerical modeling is one of the effective methods which understand seismic propagation rules in complex media. As a numerical simulation method, boundary element methods had been widely used in seismic wave field study. This paper mainly studies randomly rough surface scattering which used some approximation solutions based on boundary element method. In addition, I developed a boundary element solution for fluid saturated porous media. In this paper, we used boundary element methods which based on integral expression of wave equation to study the free rough surface scattering effects of Kirchhoff approximation method, Perturbation approximation method, Rytov approximation method and Born series approximation method. Gaussian spectrum model of randomly rough surfaces was chosen as the benchmark model. The approximation methods result were compared with exact results which obtained by boundary element methods, we study that the above approximation methods were applicable how rough surfaces and it is founded that this depends on and ( here is the wavenumber of the incident field, is the RMS height and is the surface correlation length ). In general, Kirchhoff approximation which ignores multiple scatterings between any two surface points has been considered valid for the large-scale roughness components. Perturbation theory based on Taylor series expansion is valid for the small-scale roughness components, as and are .Tests with the Gaussian topographies show that the Rytov approximation methods improves the Kirchhoff approximation in both amplitude and phase but at the cost of an extra treatment of transformation for the wave fields. The realistic methods for the multiscale surfaces come with the Born series approximation and the second-order Born series approximation might be sufficient to guarantee the accuracy of randomly rough surfaces. It could be an appropriate choice that a complex rough surface can be divided into large-, medium-, and small-scale roughness components with their scattering features be studied by the Kirchhoff or Rytov phase approximations, the Born series approximation, and the perturbation theory, respectively. For this purpose, it is important to select appropriate parameters that separate these different scale roughness components to guarantee the divided surfaces satisfy the physical assumptions of the used approximations, respectively. In addition, in this paper, the boundary element methods are used for solving the porous elastic wave propagation and carry out the numerical simulation. Based on the fluid-saturated porous model, this paper analyses and presents the dynamic equation of elastic wave propagation and boundary integral equation formulation of fluid saturated porous media in frequency domain. The fundamental solutions of the elastic wave equations are obtained according to the similarity between thermoelasticity and poroelasticity. At last, the numerical simulation of the elastic wave propagation in the two-phase isotropic media is carried out by using the boundary element method. The results show that a slow quasi P-wave can be seen in both solid and fluid wave-field synthetic seismograms. The boundary element method is effective and feasible.
Resumo:
An industrial electrolysis cell used to produce primary aluminium is sensitive to waves at the interface of liquid aluminium and electrolyte. The interface waves are similar to stratified sea layers [1], but the penetrating electric current and the associated magnetic field are intricately involved in the oscillation process, and the observed wave frequencies are shifted from the purely hydrodynamic ones [2]. The interface stability problem is of great practical importance because the electrolytic aluminium production is a major electrical energy consumer, and it is related to environmental pollution rate. The stability analysis was started in [3] and a short summary of the main developments is given in [2]. Important aspects of the multiple mode interaction have been introduced in [4], and a widely used linear friction law first applied in [5]. In [6] a systematic perturbation expansion is developed for the fluid dynamics and electric current problems permitting reduction of the three-dimensional problem to a two dimensional one. The procedure is more generally known as “shallow water approximation” which can be extended for the case of weakly non-linear and dispersive waves. The Boussinesq formulation permits to generalise the problem for non-unidirectionally propagating waves accounting for side walls and for a two fluid layer interface [1]. Attempts to extend the electrolytic cell wave modelling to the weakly nonlinear case have started in [7] where the basic equations are derived, including the nonlinearity and linear dispersion terms. An alternative approach for the nonlinear numerical simulation for an electrolysis cell wave evolution is attempted in [8 and references there], yet, omitting the dispersion terms and without a proper account for the dissipation, the model can predict unstable waves growth only. The present paper contains a generalisation of the previous non linear wave equations [7] by accounting for the turbulent horizontal circulation flows in the two fluid layers. The inclusion of the turbulence model is essential in order to explain the small amplitude self-sustained oscillations of the liquid metal surface observed in real cells, known as “MHD noise”. The fluid dynamic model is coupled to the extended electromagnetic simulation including not only the fluid layers, but the whole bus bar circuit and the ferromagnetic effects [9].
Resumo:
In quantum tunnelling, what appears to be an infinitely fast barrier traversal can be explained in terms of an Aharonov-like weak measurement of the tunnelling time, in which the role of the pointer is played by the particle's own coordinate. A relativistic wave packet is shown to be reshaped through a series of subluminal shifts which together produce an anomalous 'superluminal' result.