953 resultados para RBCL SEQUENCES
Resumo:
O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).
Resumo:
Copyright © 2014 British Phycological Society.
Resumo:
10th International Phycological Congress, Orlando, Florida, USA, 4-10 de agosto 2013.
Resumo:
The process of immobilization of biological molecules is one of the most important steps in the construction of a biosensor. In the case of DNA, the way it exposes its bases can result in electrochemical signals to acceptable levels. The use of self-assembled monolayer that allows a connection to the gold thiol group and DNA binding to an aldehydic ligand resulted in the possibility of determining DNA hybridization. Immobilized single strand of DNA (ssDNA) from calf thymus pre-formed from alkanethiol film was formed by incubating a solution of 2-aminoethanothiol (Cys) followed by glutaraldehyde (Glu). Cyclic voltammetry (CV) was used to characterize the self-assembled monolayer on the gold electrode and, also, to study the immobilization of ssDNA probe and hybridization with the complementary sequence (target ssDNA). The ssDNA probe presents a well-defined oxidation peak at +0.158 V. When the hybridization occurs, this peak disappears which confirms the efficacy of the annealing and the DNA double helix performing without the presence of electroactive indicators. The use of SAM resulted in a stable immobilization of the ssDNA probe, enabling the hybridization detection without labels. This study represents a promising approach for molecular biosensor with sensible and reproducible results.
Resumo:
European Transactions on Telecommunications, vol. 18
Resumo:
Mycologia, Vol. 98, nº6
Resumo:
Rev. Soc. Geol. España, 12(1), ano 1999
Resumo:
Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation.
Resumo:
A previously healthy seven-year-old boy was admitted to the intensive care unit because of toxaemia associated with varicella. He rapidly developed shock and multisystem organ failure associated with the appearance of a deep-seated soft tissue infection and, despite aggressive treatment, died on hospital day 4. An M-non-typable, spe A and spe B positive Group A Streptococcus was cultured from a deep soft tissue aspirate. The criteria for defining Streptococcal toxic shock-like syndrome were fulfilled. The authors discuss the clinical and pathophysiological aspects of this disease as well as some unusual clinical findings related to this case.
Resumo:
The genomic sequences of the Envelope-Non-Structural protein 1 junction region (E/NS1) of 84 DEN-1 and 22 DEN-2 isolates from Brazil were determined. Most of these strains were isolated in the period from 1995 to 2001 in endemic and regions of recent dengue transmission in São Paulo State. Sequence data for DEN-1 and DEN-2 utilized in phylogenetic and split decomposition analyses also include sequences deposited in GenBank from different regions of Brazil and of the world. Phylogenetic analyses were done using both maximum likelihood and Bayesian approaches. Results for both DEN-1 and DEN-2 data are ambiguous, and support for most tree bipartitions are generally poor, suggesting that E/NS1 region does not contain enough information for recovering phylogenetic relationships among DEN-1 and DEN-2 sequences used in this study. The network graph generated in the split decomposition analysis of DEN-1 does not show evidence of grouping sequences according to country, region and clades. While the network for DEN-2 also shows ambiguities among DEN-2 sequences, it suggests that Brazilian sequences may belong to distinct subtypes of genotype III.
Resumo:
Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.
Resumo:
Binary sequence, perfect sequence, autocorrelation, crosscorrelation, Hadamard transform
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2013