905 resultados para Query languages
Resumo:
Taiwan is a rapidly changing society, facing many challenges. In this state of flux, it is important to step back and see the big picture. The NewFutures 2000 conference, which commemorated fifty years of the of Tamkang University, in TamShui (the northernmost tip), Taiwan (Republic of China) and was held on 5–7 November 2000, gave Taiwanese an opportunity to gain just such a perspective. The ostensible aim of the conference was to explore ‘transformations in education, culture and technology’. But numerous perspectives and academic approaches were explored; predictions, normative visions, probable futures, alternative futures, ethical futures, epistemological re-constructions, studies and deconstruction’s of images of the future, myth and worldview—all received attention, sometimes overwhelming the participants with contradictory and overbearing ideas. [introduction]
Resumo:
ICT is becoming a prominent part of healthcare delivery but brings with it information privacy concerns for patients and competing concerns by the caregivers. A proper balance between these issues must be established in order to fully utilise ICT capabilities in healthcare. Information accountability is a fairly new concept to computer science which focuses on fair use of information. In this paper we investigate the different issues that need to be addressed when applying information accountability principles to manage healthcare information. We briefly introduce an information accountability framework for handling electronic health records (eHR). We focus more on digital rights management by considering data in eHRs as digital assets and how we can represent privacy policies and data usage policies as these are key factors in accountability systems.
Resumo:
In information retrieval (IR) research, more and more focus has been placed on optimizing a query language model by detecting and estimating the dependencies between the query and the observed terms occurring in the selected relevance feedback documents. In this paper, we propose a novel Aspect Language Modeling framework featuring term association acquisition, document segmentation, query decomposition, and an Aspect Model (AM) for parameter optimization. Through the proposed framework, we advance the theory and practice of applying high-order and context-sensitive term relationships to IR. We first decompose a query into subsets of query terms. Then we segment the relevance feedback documents into chunks using multiple sliding windows. Finally we discover the higher order term associations, that is, the terms in these chunks with high degree of association to the subsets of the query. In this process, we adopt an approach by combining the AM with the Association Rule (AR) mining. In our approach, the AM not only considers the subsets of a query as “hidden” states and estimates their prior distributions, but also evaluates the dependencies between the subsets of a query and the observed terms extracted from the chunks of feedback documents. The AR provides a reasonable initial estimation of the high-order term associations by discovering the associated rules from the document chunks. Experimental results on various TREC collections verify the effectiveness of our approach, which significantly outperforms a baseline language model and two state-of-the-art query language models namely the Relevance Model and the Information Flow model
Resumo:
In this chapter I explore the ways process drama can enrich and enliven the assessment regime of a middle school beginner language program. The chapter draws on five months’ language teaching which I did to collect data during my doctoral research. I taught a secondary co-educational class of 12-13 year olds (first year secondary school) for their German lessons while the teacher who had invited me in observed the lessons. Throughout the project there was an emphasis on student participation through questionnaire, discussion and interview...
Resumo:
In the recent past, there are some social issues when personal sensitive data in medical database were exposed. The personal sensitive data should be protected and access must be accounted for. Protecting the sensitive information is possible by encrypting such information. The challenge is querying the encrypted information when making the decision. Encrypted query is practically somewhat tedious task. So we present the more effective method using bucket index and bloom filter technology. We find that our proposed method shows low memory and fast efficiency comparatively. Simulation approaches on data encryption techniques to improve health care decision making processes are presented in this paper as a case scenario.
Resumo:
The quality of discovered features in relevance feedback (RF) is the key issue for effective search query. Most existing feedback methods do not carefully address the issue of selecting features for noise reduction. As a result, extracted noisy features can easily contribute to undesirable effectiveness. In this paper, we propose a novel feature extraction method for query formulation. This method first extract term association patterns in RF as knowledge for feature extraction. Negative RF is then used to improve the quality of the discovered knowledge. A novel information filtering (IF) model is developed to evaluate the proposed method. The experimental results conducted on Reuters Corpus Volume 1 and TREC topics confirm that the proposed model achieved encouraging performance compared to state-of-the-art IF models.
Resumo:
This paper develops a framework for classifying term dependencies in query expansion with respect to the role terms play in structural linguistic associations. The framework is used to classify and compare the query expansion terms produced by the unigram and positional relevance models. As the unigram relevance model does not explicitly model term dependencies in its estimation process it is often thought to ignore dependencies that exist between words in natural language. The framework presented in this paper is underpinned by two types of linguistic association, namely syntagmatic and paradigmatic associations. It was found that syntagmatic associations were a more prevalent form of linguistic association used in query expansion. Paradoxically, it was the unigram model that exhibited this association more than the positional relevance model. This surprising finding has two potential implications for information retrieval models: (1) if linguistic associations underpin query expansion, then a probabilistic term dependence assumption based on position is inadequate for capturing them; (2) the unigram relevance model captures more term dependency information than its underlying theoretical model suggests, so its normative position as a baseline that ignores term dependencies should perhaps be reviewed.
Resumo:
This paper discusses users’ query reformulation behaviour while searching information on the Web. Query reformulations have emerged as an important component of Web search behaviour and human-computer interaction (HCI) because a user’s success of information retrieval (IR) depends on how he or she formulates queries. There are various factors, such as cognitive styles, that influence users’ query reformulation behaviour. Understanding how users with different cognitive styles formulate their queries while performing Web searches can help HCI researchers and information systems (IS) developers to provide assistance to the users. This paper aims to examine the effects of users’ cognitive styles on their query reformation behaviour. To achieve the goal of the study, a user study was conducted in which a total of 3613 search terms and 872 search queries were submitted by 50 users who engaged in 150 scenario-based search tasks. Riding’s (1991) Cognitive Style Analysis (CSA) test was used to assess users’ cognitive style as wholist or analytic, and verbaliser or imager. The study findings show that users’ query reformulation behaviour is affected by their cognitive styles. The results reveal that analytic users tended to prefer Add queries while all other users preferred New queries. A significant difference was found among wholists and analytics in the manner they performed Remove query reformulations. Future HCI researchers and IS developers can utilize the study results to develop interactive and user-cantered search model, and to provide context-based query suggestions for users.
Resumo:
My interest in producing this paper on Indigenous languages was borne out of conversations with and learnings from community members in the Torres Straits and those connected to the ‘Dream Circle’. Nakata (2003, p. 12) laments the situation whereby ‘teachers are transitionary and take their hard-earned knowledge with them when they leave’. I am thus responding to the call to add to the conversation in a productive albeit culturally loaded way. To re-iterate, I am neither Indigenous nor am I experienced in teaching and learning in these contexts. As problematic as these two points are, I am in many ways typical of the raft of inexperienced white Australian teachers assigned to positions in school contexts where Indigenous students are enrolled or in mainstream contexts with substantial populations of Indigenous students. By penning this article, it is neither my intention to contribute to the silencing of Indigenous educators or Indigenous communities. My intention is to articulate my teacherly reflections as they apply to the topic under discussion. The remainder of this paper is presented in three sections. The next section provides a brief overview of the number of Indigenous people and Indigenous languages in Australia and the role of English as a language of communication. The section which follows draws on theorisations from second/additional language acquisition to overview three different schools of thought about the consequences of English in the lives of Indigenous Australians. The paper concludes by considering the tensions for inexperienced white Australian teachers caught up in the fray.
Resumo:
Success of query reformulation and relevant information retrieval depends on many factors, such as users’ prior knowledge, age, gender, and cognitive styles. One of the important factors that affect a user’s query reformulation behaviour is that of the nature of the search tasks. Limited studies have examined the impact of the search task types on query reformulation behaviour while performing Web searches. This paper examines how the nature of the search tasks affects users’ query reformulation behaviour during information searching. The paper reports empirical results from a user study in which 50 participants performed a set of three Web search tasks – exploratory, factorial and abstract. Users’ interactions with search engines were logged by using a monitoring program. 872 unique search queries were classified into five query types – New, Add, Remove, Replace and Repeat. Users submitted fewer queries for the factual task, which accounted for 26%. They completed a higher number of queries (40% of the total queries) while carrying out the exploratory task. A one-way MANOVA test indicated a significant effect of search task types on users’ query reformulation behaviour. In particular, the search task types influenced the manner in which users reformulated the New and Repeat queries.
Resumo:
As business process management technology matures, organisations acquire more and more business process models. The management of the resulting collections of process models poses real challenges. One of these challenges concerns model retrieval where support should be provided for the formulation and efficient execution of business process model queries. As queries based on only structural information cannot deal with all querying requirements in practice, there should be support for queries that require knowledge of process model semantics. In this paper we formally define a process model query language that is based on semantic relationships between tasks in process models and is independent of any particular process modelling notation.
Resumo:
Building information modeling (BIM) is an emerging technology and process that provides rich and intelligent design information models of a facility, enabling enhanced communication, coordination, analysis, and quality control throughout all phases of a building project. Although there are many documented benefits of BIM for construction, identifying essential construction-specific information out of a BIM in an efficient and meaningful way is still a challenging task. This paper presents a framework that combines feature-based modeling and query processing to leverage BIM for construction. The feature-based modeling representation implemented enriches a BIM by representing construction-specific design features relevant to different construction management (CM) functions. The query processing implemented allows for increased flexibility to specify queries and rapidly generate the desired view from a given BIM according to the varied requirements of a specific practitioner or domain. Central to the framework is the formalization of construction domain knowledge in the form of a feature ontology and query specifications. The implementation of our framework enables the automatic extraction and querying of a wide-range of design conditions that are relevant to construction practitioners. The validation studies conducted demonstrate that our approach is significantly more effective than existing solutions. The research described in this paper has the potential to improve the efficiency and effectiveness of decision-making processes in different CM functions.
Resumo:
Stigmergy is a biological term originally used when discussing insect or swarm behaviour, and describes a model supporting environment-based communication separating artefacts from agents. This phenomenon is demonstrated in the behavior of ants and their food foraging supported by pheromone trails, or similarly termites and their termite nest building process. What is interesting with this mechanism is that highly organized societies are formed without an apparent central management function. We see design features in Web sites that mimic stigmergic mechanisms as part of the User Interface and we have created generalizations of these patterns. Software development and Web site development techniques have evolved significantly over the past 20 years. Recent progress in this area proposes languages to model web applications to facilitate the nuances specific to these developments. These modeling languages provide a suitable framework for building reusable components encapsulating our design patterns of stigmergy. We hypothesize that incorporating stigmergy as a separate feature of a site’s primary function will ultimately lead to enhanced user coordination.
Resumo:
Database security techniques are available widely. Among those techniques, the encryption method is a well-certified and established technology for protecting sensitive data. However, once encrypted, the data can no longer be easily queried. The performance of the database depends on how to encrypt the sensitive data, and an approach for searching and retrieval efficiencies that are implemented. In this paper we analyze the database queries and the data properties and propose a suitable mechanism to query the encrypted database. We proposed and analyzed the new database encryption algorithm using the Bloom Filter with the bucket index method. Finally, we demonstrated the superiority of the proposed algorithm through several experiments that should be useful for database encryption related research and application activities.
Resumo:
A user’s query is considered to be an imprecise description of their information need. Automatic query expansion is the process of reformulating the original query with the goal of improving retrieval effectiveness. Many successful query expansion techniques ignore information about the dependencies that exist between words in natural language. However, more recent approaches have demonstrated that by explicitly modeling associations between terms significant improvements in retrieval effectiveness can be achieved over those that ignore these dependencies. State-of-the-art dependency-based approaches have been shown to primarily model syntagmatic associations. Syntagmatic associations infer a likelihood that two terms co-occur more often than by chance. However, structural linguistics relies on both syntagmatic and paradigmatic associations to deduce the meaning of a word. Given the success of dependency-based approaches and the reliance on word meanings in the query formulation process, we argue that modeling both syntagmatic and paradigmatic information in the query expansion process will improve retrieval effectiveness. This article develops and evaluates a new query expansion technique that is based on a formal, corpus-based model of word meaning that models syntagmatic and paradigmatic associations. We demonstrate that when sufficient statistical information exists, as in the case of longer queries, including paradigmatic information alone provides significant improvements in retrieval effectiveness across a wide variety of data sets. More generally, when our new query expansion approach is applied to large-scale web retrieval it demonstrates significant improvements in retrieval effectiveness over a strong baseline system, based on a commercial search engine.