992 resultados para Quark-meson coupling models


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work is to implement the mechanism of link rearrangement predicted in the strong coupling limit of Hamiltonian lattice QCD - in a constituent quark model in which constituent quarks, links and junctions are the dominant degrees of freedom. The implications of link rearrangement for the meson-meson interaction are investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quark-model descriptions of the nucleon-nucleon interaction contain two main ingredients, a quark-exchange mechanism for the short-range repulsion and meson exchanges for the medium- and long-range parts of the interaction. We point out the special role played by higher partial waves, and in particular the (1)F(3), as a very sensitive probe for the meson-exchange pan employed in these interaction models. In particular, we show that the presently available models fail to provide a reasonable description of higher partial waves and indicate the reasons for this shortcoming.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The description of the short-range part of the nucleon-nucleon forces in terms of quark degrees of freedom is tested against experimental observables. We consider, for this purpose, a model where the short-range part of the forces is given by the quark cluster model and the long- and medium-range forces by well established meson exchanges. The investigation is performed using different quark cluster models coming from different sets of quark-quark interactions. The predictions of this model are compared not only with the phase shifts but also directly with the experimental observables. Agreement with the existing pp and np world set of data is poor. This suggests that the current description of the nucleon-nucleon interaction, at short distances, in the framework of the nonrelativistic quark models, is at present only qualitative.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We discuss the consistency of the traditional vector meson dominance (VMD) model for photons coupling to matter, with the vanishing of vector meson-meson and meson-photon mixing self-energies at q2 = 0. This vanishing of vector mixing has been demonstrated in the context of rho-omega mixing for a large class of effective theories. As a further constraint on such models, we here apply them to a study of photon-meson mixing and VMD. As an example we compare the predicted momentum dependence of one such model with a momentum-dependent version of VMD discussed by Sakurai in the 1960's. We find that it produces a result which is consistent with the traditional VMD phenomenology. We conclude that comparison with VMD phenomenology can provide a useful constraint on such models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a model to describe inclusive meson production in e+e- reactions based on a quark cascade approach whose formulation is put in terms of diffusion equations for three quark flavors (u, d, s). These equations are solved by using a formalism previously developed for the problem of the electromagnetic cascade generated in the atmosphere by cosmicray interactions. The obtained solutions are given in terms of a combination of power-law functions whose profiles are adequate to describe the characteristics observed in the inclusive spectrum of mesons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We determine the critical coupling constant above which dynamical chiral symmetry breaking occurs in a class of QCD motivated models where the gluon propagator has an enhanced infrared behavior. Using methods of bifurcation theory we find that the critical value of the coupling constant is always smaller than the one obtained for QCD. ©2000 The American Physical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The scattering of charmed mesons on nucleons is investigated within a chiral quark model inspired on the QCD Hamiltonian in Coulomb gauge. The microscopic model incorporates a longitudinal Coulomb confining interaction derived from a self-consistent quasi-particle approximation to the QCD vacuum, and a traverse hyperfine interaction motivated from lattice simulations of QCD in Coulomb gauge. From the microscopic interactions at the quark level, effective meson-baryon interactions are derived using a mapping formalism that leads to quark-Born diagrams. As an application, the total cross-section of heavy-light D-mesons scattering on nucleons is estimated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we discuss the strength of the trilinear Higgs boson coupling in composite models in a model independent way. The coupling is determined as a function of a very general ansatz for the fermionic self-energy, and turns out to be equal or smaller than the one of the Standard Model Higgs boson depending on the dynamics of the theory. © World Scientific Publishing Company.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider some existing relativistic models for the nucleon structure functions, relying on statistical approaches instead of perturbative ones. These models are based on the Fermi-Dirac distribution for the confined quarks, where a density of energy levels is obtained from an effective confining potential. In this context, it is presented some results obtained with a recent statistical quark model for the sea-quark asymmetry in the nucleon. It is shown, within this model, that experimental available observables, such as the ratio and difference between proton and neutron structure functions, are quite well reproduced with just three parameters: two chemical potentials used to reproduce the valence up and down quark numbers in the nucleon, and a temperature that is being used to reproduce the Gottfried sum rule violation. © 2010 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A model of the DN interaction is presented which is developed in close analogy to the meson-exchange KN potential of the Jülich group utilizing SU(4) symmetry constraints. The main ingredients of the interaction are provided by vector meson (ρ, ω) exchange and higher-order box diagrams involving D *N, DΔ, and D *Δ intermediate states. The coupling of DN to the π Λ c and π Σ c channels is taken into account. The interaction model generates the Λ c(2595)-resonance dynamically as a DN quasi-bound state. Results for DN total and differential cross sections are presented and compared with predictions of two interaction models that are based on the leading-order Weinberg-Tomozawa term. Some features of the Λ c(2595)-resonance are discussed and the role of the near-by π Σ c threshold is emphasized. Selected predictions of the orginal KN model are reported too. Specifically, it is pointed out that the model generates two poles in the partial wave corresponding to the Λ(1405)-resonance. © 2011 SIF, Springer-Verlag Berlin Heidelberg.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the low-energy elastic D̄N interaction using a quark model that confines color and realizes dynamical chiral symmetry breaking. The model is defined by a microscopic Hamiltonian inspired in the QCD Hamiltonian in Coulomb gauge. Constituent quark masses are obtained by solving a gap equation, and baryon and meson bound-state wave functions are obtained using a variational method. We derive a low-energy meson-nucleon potential from a quark-interchange mechanism whose ingredients are the quark-quark and quark-antiquark interactions and baryon and meson wave functions, all derived from the same microscopic Hamiltonian. The model is supplemented with (σ, ρ, ω, a0) single-meson exchanges to describe the long-range part of the interaction. Cross sections and phase shifts are obtained by iterating the quark-interchange plus meson-exchange potentials in a Lippmann-Schwinger equation. Once coupling constants of long-range scalar σ and a0 meson exchanges are adjusted to describe experimental phase shifts of the K+N and K0N reactions, predictions for cross sections and s-wave phase shifts for the D̄0N and D-N reactions are obtained without introducing new parameters. © 2013 American Physical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We verify that SU(N)TC⊗ - SU(3) L⊗ - U(1)X models, where the gauge symmetry breaking is totally dynamical and promoted by the non-Abelian technicolor group and the strong Abelian interactions, are quite constrained by the LHC data. The theory contains a T quark self-energy involving the mixing between the neutral gauge bosons, which introduces the coupling between the light and heavy composite scalar bosons of the model. We determine the lightest scalar boson mass for these models from an effective action for composite operators, assuming details about the dynamics of the strong interaction theories. Comparing the value of this mass with the ATLAS and CMS observation of a new boson with a mass M∼125 GeV and considering the lower bound determined by the LHC Collaboration on the heavy neutral gauge boson (Z′) present in these models, we can establish constraints on the possible models. For example, if SU(N)TC≡SU(2)TC, with technifermions in the fundamental representation, the model barely survives the confrontation with the LHC data. © 2013 American Physical Society.