994 resultados para QUANTUM COMPUTATION
Resumo:
During recent years, quantum information processing and the study of N−qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing efficient quantum information protocols, such as quantum key distribution, teleportation or quantum computation, however, these investigations also revealed a great deal of difficulties which still need to be resolved in practise. Quantum information protocols rely on the application of unitary and non–unitary quantum operations that act on a given set of quantum mechanical two-state systems (qubits) to form (entangled) states, in which the information is encoded. The overall system of qubits is often referred to as a quantum register. Today the entanglement in a quantum register is known as the key resource for many protocols of quantum computation and quantum information theory. However, despite the successful demonstration of several protocols, such as teleportation or quantum key distribution, there are still many open questions of how entanglement affects the efficiency of quantum algorithms or how it can be protected against noisy environments. To facilitate the simulation of such N−qubit quantum systems and the analysis of their entanglement properties, we have developed the Feynman program. The program package provides all necessary tools in order to define and to deal with quantum registers, quantum gates and quantum operations. Using an interactive and easily extendible design within the framework of the computer algebra system Maple, the Feynman program is a powerful toolbox not only for teaching the basic and more advanced concepts of quantum information but also for studying their physical realization in the future. To this end, the Feynman program implements a selection of algebraic separability criteria for bipartite and multipartite mixed states as well as the most frequently used entanglement measures from the literature. Additionally, the program supports the work with quantum operations and their associated (Jamiolkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. As an application of the developed tools we further present two case studies in which the entanglement of two atomic processes is investigated. In particular, we have studied the change of the electron-ion spin entanglement in atomic photoionization and the photon-photon polarization entanglement in the two-photon decay of hydrogen. The results show that both processes are, in principle, suitable for the creation and control of entanglement. Apart from process-specific parameters like initial atom polarization, it is mainly the process geometry which offers a simple and effective instrument to adjust the final state entanglement. Finally, for the case of the two-photon decay of hydrogenlike systems, we study the difference between nonlocal quantum correlations, as given by the violation of the Bell inequality and the concurrence as a true entanglement measure.
Resumo:
We are currently at the cusp of a revolution in quantum technology that relies not just on the passive use of quantum effects, but on their active control. At the forefront of this revolution is the implementation of a quantum computer. Encoding information in quantum states as “qubits” allows to use entanglement and quantum superposition to perform calculations that are infeasible on classical computers. The fundamental challenge in the realization of quantum computers is to avoid decoherence – the loss of quantum properties – due to unwanted interaction with the environment. This thesis addresses the problem of implementing entangling two-qubit quantum gates that are robust with respect to both decoherence and classical noise. It covers three aspects: the use of efficient numerical tools for the simulation and optimal control of open and closed quantum systems, the role of advanced optimization functionals in facilitating robustness, and the application of these techniques to two of the leading implementations of quantum computation, trapped atoms and superconducting circuits. After a review of the theoretical and numerical foundations, the central part of the thesis starts with the idea of using ensemble optimization to achieve robustness with respect to both classical fluctuations in the system parameters, and decoherence. For the example of a controlled phasegate implemented with trapped Rydberg atoms, this approach is demonstrated to yield a gate that is at least one order of magnitude more robust than the best known analytic scheme. Moreover this robustness is maintained even for gate durations significantly shorter than those obtained in the analytic scheme. Superconducting circuits are a particularly promising architecture for the implementation of a quantum computer. Their flexibility is demonstrated by performing optimizations for both diagonal and non-diagonal quantum gates. In order to achieve robustness with respect to decoherence, it is essential to implement quantum gates in the shortest possible amount of time. This may be facilitated by using an optimization functional that targets an arbitrary perfect entangler, based on a geometric theory of two-qubit gates. For the example of superconducting qubits, it is shown that this approach leads to significantly shorter gate durations, higher fidelities, and faster convergence than the optimization towards specific two-qubit gates. Performing optimization in Liouville space in order to properly take into account decoherence poses significant numerical challenges, as the dimension scales quadratically compared to Hilbert space. However, it can be shown that for a unitary target, the optimization only requires propagation of at most three states, instead of a full basis of Liouville space. Both for the example of trapped Rydberg atoms, and for superconducting qubits, the successful optimization of quantum gates is demonstrated, at a significantly reduced numerical cost than was previously thought possible. Together, the results of this thesis point towards a comprehensive framework for the optimization of robust quantum gates, paving the way for the future realization of quantum computers.
Resumo:
The technologies are rapidly developing, but some of them present in the computers, as for instance their processing capacity, are reaching their physical limits. It is up to quantum computation offer solutions to these limitations and issues that may arise. In the field of information security, encryption is of paramount importance, being then the development of quantum methods instead of the classics, given the computational power offered by quantum computing. In the quantum world, the physical states are interrelated, thus occurring phenomenon called entanglement. This study presents both a theoretical essay on the merits of quantum mechanics, computing, information, cryptography and quantum entropy, and some simulations, implementing in C language the effects of entropy of entanglement of photons in a data transmission, using Von Neumann entropy and Tsallis entropy.
Resumo:
The aim of this thesis is to investigate the nature of quantum computation and the question of the quantum speed-up over classical computation by comparing two different quantum computational frameworks, the traditional quantum circuit model and the cluster-state quantum computer. After an introductory survey of the theoretical and epistemological questions concerning quantum computation, the first part of this thesis provides a presentation of cluster-state computation suitable for a philosophical audience. In spite of the computational equivalence between the two frameworks, their differences can be considered as structural. Entanglement is shown to play a fundamental role in both quantum circuits and cluster-state computers; this supports, from a new perspective, the argument that entanglement can reasonably explain the quantum speed-up over classical computation. However, quantum circuits and cluster-state computers diverge with regard to one of the explanations of quantum computation that actually accords a central role to entanglement, i.e. the Everett interpretation. It is argued that, while cluster-state quantum computation does not show an Everettian failure in accounting for the computational processes, it threatens that interpretation of being not-explanatory. This analysis presented here should be integrated in a more general work in order to include also further frameworks of quantum computation, e.g. topological quantum computation. However, what is revealed by this work is that the speed-up question does not capture all that is at stake: both quantum circuits and cluster-state computers achieve the speed-up, but the challenges that they posit go besides that specific question. Then, the existence of alternative equivalent quantum computational models suggests that the ultimate question should be moved from the speed-up to a sort of “representation theorem” for quantum computation, to be meant as the general goal of identifying the physical features underlying these alternative frameworks that allow for labelling those frameworks as “quantum computation”.
Resumo:
At present, several models for quantum computation have been proposed. Adiabatic quantum computation scheme particularly offers this possibility and is based on a slow enough time evolution of the system, where no transitions take place. In this work, a new strategy for quantum computation is provided from the opposite point of view. The objective is to control the non-adiabatic transitions between some states in order to produce the desired exit states after the evolution. The model is introduced by means of an analogy between the adiabatic quantum computation and an inelastic atomic collision. By means of a simple two-state model, several quantum gates are reproduced, concluding the possibility of diabatic universal faulttolerant quantum computation. Going a step further, a new quantum diabatic computation model is glimpsed, where a carefully chosen Hamiltonian could carry out a non-adiabatic transition between the initial and the sought final state.
Resumo:
We define several quantitative measures of the robustness of a quantum gate against noise. Exact analytic expressions for the robustness against depolarizing noise are obtained for all bipartite unitary quantum gates, and it is found that the controlled-NOT gate is the most robust two-qubit quantum gate, in the sense that it is the quantum gate which can tolerate the most depolarizing noise and still generate entanglement. Our results enable us to place several analytic upper bounds on the value of the threshold for quantum computation, with the best bound in the most pessimistic error model being p(th)less than or equal to0.5.
Resumo:
Complete and precise characterization of a quantum dynamical process can be achieved via the method of quantum process tomography. Using a source of correlated photons, we have implemented several methods, each investigating a wide range of processes, e.g., unitary, decohering, and polarizing. One of these methods, ancilla-assisted process tomography (AAPT), makes use of an additional ancilla system, and we have theoretically determined the conditions when AAPT is possible. Surprisingly, entanglement is not required. We present data obtained using both separable and entangled input states. The use of entanglement yields superior results, however.
Resumo:
We show that the one-way channel formalism of quantum optics has a physical realization in electronic systems. In particular, we show that magnetic edge states form unidirectional quantum channels capable of coherently transporting electronic quantum information. Using the equivalence between one-way photonic channels and magnetic edge states, we adapt a proposal for quantum state transfer to mesoscopic systems using edge states as a quantum channel, and show that it is feasible with reasonable experimental parameters. We discuss how this protocol may be used to transfer information encoded in number, charge, or spin states of quantum dots, so it may prove useful for transferring quantum information between parts of a solid-state quantum computer
Resumo:
We outline a toolbox comprised of passive optical elements, single photon detection and superpositions of coherent states (Schrodinger cat states). Such a toolbox is a powerful collection of primitives for quantum information processing tasks. We illustrate its use by outlining a proposal for universal quantum computation. We utilize this toolbox for quantum metrology applications, for instance weak force measurements and precise phase estimation. We show in both these cases that a sensitivity at the Heisenberg limit is achievable.
Resumo:
We show how the measurement induced model of quantum computation proposed by Raussendorf and Briegel ( 2001, Phys. Rev. Letts., 86, 5188) can be adapted to a nonlinear optical interaction. This optical implementation requires a Kerr nonlinearity, a single photon source, a single photon detector and fast feed forward. Although nondeterministic optical quantum information proposals such as that suggested by KLM ( 2001, Nature, 409, 46) do not require a Kerr nonlinearity they do require complex reconfigurable optical networks. The proposal in this paper has the benefit of a single static optical layout with fixed device parameters, where the algorithm is defined by the final measurement procedure.
Resumo:
In this paper we investigate the effect of dephasing on proposed quantum gates for the solid-state Kane quantum computing architecture. Using a simple model of the decoherence, we find that the typical error in a controlled-NOT gate is 8.3x10(-5). We also compute the fidelities of Z, X, swap, and controlled Z operations under a variety of dephasing rates. We show that these numerical results are comparable with the error threshold required for fault tolerant quantum computation.
Resumo:
We produce and holographically measure entangled qudits encoded in transverse spatial modes of single photons. With the novel use of a quantum state tomography method that only requires two-state superpositions, we achieve the most complete characterization of entangled qutrits to date. Ideally, entangled qutrits provide better security than qubits in quantum bit commitment: we model the sensitivity of this to mixture and show experimentally and theoretically that qutrits with even a small amount of decoherence cannot offer increased security over qubits.
Resumo:
Recent progress in fabrication and control of single quantum systems presage a nascent technology based on quantum principles. We review these principles in the context of specific examples including: quantum dots, quantum electromechanical systems, quantum communication and quantum computation.
Resumo:
What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z(2). This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP subset of P-#P and BQP subset of PP.
Resumo:
We present experimental results on the measurement of fidelity decay under contrasting system dynamics using a nuclear magnetic resonance quantum information processor. The measurements were performed by implementing a scalable circuit in the model of deterministic quantum computation with only one quantum bit. The results show measurable differences between regular and complex behavior and for complex dynamics are faithful to the expected theoretical decay rate. Moreover, we illustrate how the experimental method can be seen as an efficient way for either extracting coarse-grained information about the dynamics of a large system or measuring the decoherence rate from engineered environments.