595 resultados para Pyruvate formiate lyase
Resumo:
Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase ( PDC) and alcohol dehydrogenase ( ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen- specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild- type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen- specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen - pistil interaction.
Resumo:
Ethanolic fermentation is classically associated with flooding tolerance when plant cells switch from respiration to anaerobic fermentation. However, recent studies have suggested that fermentation also has important functions in the presence of oxygen, mainly in germinating pollen and during abiotic stress. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we characterize the PDC gene family in Arabidopsis. PDC is encoded by four closely related genes. By using real-time quantitative polymerase chain reaction, we determined the expression levels of each individual gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental stress conditions. We show that PDC1 is the only gene induced under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other environmental stresses. We also characterize the expression of the aldehyde dehydrogenase (ALDH) gene family. None of the three genes is induced by anoxia but ALDH2B7 reacts strongly to ABA application and dehydration, suggesting that ALDH may play a role in aerobic detoxification of acetaldehyde. We discuss the possible role of ethanolic fermentation as a robust back-up energy production pathway under adverse conditions when mitochondrial function is disturbed.
Resumo:
Loss of function of the urea cycle enzyme argininosuccinate lyase (ASL) is caused by mutations in the ASL gene leading to ASL deficiency (ASLD). ASLD has a broad clinical spectrum ranging from life-threatening severe neonatal to asymptomatic forms. Different levels of residual ASL activity probably contribute to the phenotypic variability but reliable expression systems allowing clinically useful conclusions are not yet available. In order to define the molecular characteristics underlying the phenotypic variability, we investigated all ASL mutations that were hitherto identified in patients with late onset or mild clinical and biochemical courses by ASL expression in human embryonic kidney 293 T cells. We found residual activities >3 % of ASL wild type (WT) in nine of 11 ASL mutations. Six ASL mutations (p.Arg95Cys, p.Ile100Thr, p.Val178Met, p.Glu189Gly, p.Val335Leu, and p.Arg379Cys) with residual activities ≥16 % of ASL WT showed no significant or less than twofold reduced Km values, but displayed thermal instability. Computational structural analysis supported the biochemical findings by revealing multiple effects including protein instability, disruption of ionic interactions and hydrogen bonds between residues in the monomeric form of the protein, and disruption of contacts between adjacent monomeric units in the ASL tetramer. These findings suggest that the clinical and biochemical course in variant forms of ASLD is associated with relevant residual levels of ASL activity as well as instability of mutant ASL proteins. Since about 30 % of known ASLD genotypes are affected by mutations studied here, ASLD should be considered as a candidate for chaperone treatment to improve mutant protein stability.
Resumo:
A novel homozygous long-range deletion of the CYP17A1 gene abolished protein expression and caused the severest form of 17-hydroxylase deficiency in one kindred of a Turkish family. The affected subjects presented with 46,XY sex reversal and 46,XX lack of pubertal development as well as severe hypertension.
Resumo:
Plant survival during flooding relies on ethanolic fermentation for energy production. The available literature indicates that the first enzyme of the ethanolic fermentation pathway, pyruvate decarboxylase (PDC), is expressed at very low levels and is likely to be rate-limiting during oxygen deprivation. The authors expressed high levels of bacterial PDC in tobacco to study the modulation of PDC activity in vivo, and assess its impact on the physiology of ethanolic fermentation and survival under oxygen stress. In contrast to leaves, wild-type normoxic roots contained considerable PDC activity, and overexpression of the bacterial PDC caused only a moderate increase in acetaldehyde and ethanol production under anoxia compared to wild-type roots. No significant lactate production could be measured at any time, making it unlikely that lactate-induced acidification (LDH/PDC pH-stat) triggers the onset of ethanol synthesis. Instead, the authors favour a model in which the flux through the pathway is regulated by substrate availability. The increased ethanolic flux in the transgenics compared to the wild-type did not enhance anoxia tolerance. On the contrary, rapid utilisation of carbohydrate reserves enhanced premature cell death in the transgenics while replenishment of carbohydrates improved survival under anoxia.
Resumo:
When plants are infected with avirulent pathogens, a selected group of plant cells rapidly die in a process commonly called the hypersensitive response (HR). Some mutations and overexpression of some unrelated genes mimic the HR lesion and associated defense responses. In all of these situations, a genetically programmed cell death pathway is activated wherein the cell actively participates in killing itself. Here we report a developmentally and environmentally regulated HR-like cell death in potato leaves constitutively expressing bacterial pyruvate decarboxylase (PDC). Lesions first appeared on the tip of fully expanded source leaves. Lesion formation was accompanied by activation of multiple defense responses and resulted in a significant resistance toPhytophthora infestans. The transgenic plants showed a five- to 12-fold increase in leaf tissue acetaldehyde and exported two- to 10-fold higher amounts of sucrose compared to the wild-type. When plants were grown at a higher temperature, both the lesion phenotype and sucrose export were restored to wild-type situations. The reduced levels of acetaldehyde at the elevated temperature suggested that the interplay of acetaldehyde with environmental and physiological factors is the inducer of lesion development. We propose that sugar metabolism plays a crucial role in the execution of cell death programs in plants.
Resumo:
Phosphatidylserine decarboxylase of E. coli, a cytoplasmic membrane protein, catalyzes the formation of phosphatidylethanolamine, the principal phospholipid of the organism. The activity of the enzyme is dependent on a covalently bound pyruvate (Satre and Kennedy (1978) J. Biol. Chem. 253, 479-483). This study shows that the enzyme consists of two nonidentical subunits, $\alpha$ (Mr = 7,332) and $\beta$ (Mr = 28,579), with the pyruvate prosthetic group in amide linkage to the amino-terminus of the $\alpha$ subunit. Partial protein sequence and DNA sequence analysis reveal that the two subunits are derived from a proenzyme ($\pi$ subunit, Mr = 35,893) through a post-translational event. During the conversion of the proenzyme to the $\alpha$ and $\beta$ subunits, the peptide bond between Gly253-Ser254 is cleaved, and Ser254 is converted to the pyruvate prosthetic group at the amino-terminus of the $\alpha$ subunit (Li and Dowhan (1988) J. Biol. Chem. 263, 11516-11522).^ The proenzyme cannot be detected in cells carrying either single or multiple copies of the gene (psd), but can be observed in a T7 RNA polymerase/promoter and transcription-translation system. The cleavage of the wild-type proenzyme occurs rapidly with a half-time on the order of 2 min. Changing of the Ser254 to cysteine (S254C) or threonine (S254T) slows the cleavage rate dramatically and results in mutants with a half-time for processing of around 2-4 h. Change of the Ser254 to alanine (S254A) blocks the cleavage of the proenzyme. The reduced processing rate with the mutations of the proenzyme is consistent with less of the functional enzyme being made. Mutants S254C and S254T produce $\sim$15% and $\sim$1%, respectively, of the activity of the wild-type allele, but can still complement a temperature-sensitive mutant of the psd locus. Neither detectable activity nor complementation is observed by mutant S254A. These results are consistent with the hydroxyl-group of the Ser254 playing a critical role in the cleavage of the peptide bond Gly253-Ser254 of the pro-phosphatidylserine decarboxylase, and support the mechanism proposed by Snell and co-workers (Recsei and Snell (1984) Annu. Rev. Biochem. 53, 357-387) for the formation of the prosthetic group of pyruvate-dependent decarboxylases. ^
Resumo:
Mitochondria have been proposed to possess base excision repair processes to correct oxidative damage to the mitochondrial genome. As the only DNA polymerase (pol) present in mitochondria, pol γ is necessarily implicated in such processes. Therefore, we tested the ability of the catalytic subunit of human pol γ to participate in uracil-provoked base excision repair reconstituted in vitro with purified components. Subsequent to actions of uracil-DNA glycosylase and apurinic/apyrimidinic endonuclease, human pol γ was able to fill a single nucleotide gap in the presence of a 5′ terminal deoxyribose phosphate (dRP) flap. We report here that the catalytic subunit of human pol γ catalyzes release of the dRP residue from incised apurinic/apyrimidinic sites to produce a substrate for DNA ligase. The heat sensitivity of this activity suggests the dRP lyase function requires a three-dimensional protein structure. The dRP lyase activity does not require divalent metal ions, and the ability to trap covalent enzyme-DNA complexes with NaBH4 strongly implicates a Schiff base intermediate in a β-elimination reaction mechanism.
Resumo:
In Azotobacter vinelandii, deletion of the fdxA gene that encodes a well characterized seven-iron ferredoxin (FdI) is known to lead to overexpression of the FdI redox partner, NADPH:ferredoxin reductase (FPR). Previous studies have established that this is an oxidative stress response in which the fpr gene is transcriptionally activated to the same extent in response to either addition of the superoxide propagator paraquat to the cells or to fdxA deletion. In both cases, the activation occurs through a specific DNA sequence located upstream of the fpr gene. Here, we report the identification of the A. vinelandii protein that binds specifically to the paraquat activatable fpr promoter region as the E1 subunit of the pyruvate dehydrogenase complex (PDHE1), a central enzyme in aerobic respiration. Sequence analysis shows that PDHE1, which was not previously suspected to be a DNA-binding protein, has a helix–turn–helix motif. The data presented here further show that FdI binds specifically to the DNA-bound PDHE1.
Resumo:
Intragenic complementation has been observed at the argininosuccinate lyase (ASL) locus. Intragenic complementation is a phenomenon that occurs when a multimeric protein is formed from subunits produced by different mutant alleles of a gene. The resulting hybrid protein exhibits enzymatic activity that is greater than that found in the oligomeric proteins produced by each mutant allele alone. The mutations involved in the most successful complementation event observed in ASL deficiency were found to be an aspartate to glycine mutation at codon 87 of one allele (D87G) coupled with a glutamine to arginine mutation at codon 286 of the other (Q286R). To understand the structural basis of the Q286R:D87G intragenic complementation event at the ASL locus, we have determined the x-ray crystal structure of recombinant human ASL at 4.0 Å resolution. The structure has been refined to an R factor of 18.8%. Two monomers related by a noncrystallographic 2-fold axis comprise the asymmetric unit, and a crystallographic 2-fold axis of space group P3121 completes the tetramer. Each of the four active sites is composed of residues from three monomers. Structural mapping of the Q286R and D87G mutations indicate that both are near the active site and each is contributed by a different monomer. Thus when mutant monomers combine randomly such that one active site contains both mutations, it is required by molecular symmetry that another active site exists with no mutations. These “native” active sites give rise to the observed partial recovery of enzymatic activity.
Resumo:
Pyruvate ferredoxin oxidoreductase (POR) has been previously purified from the hyperthermophilic archaeon, Pyrococcus furiosus, an organism that grows optimally at 100°C by fermenting carbohydrates and peptides. The enzyme contains thiamine pyrophosphate and catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2 and reduces P. furiosus ferredoxin. Here we show that this enzyme also catalyzes the formation of acetaldehyde from pyruvate in a CoA-dependent reaction. Desulfocoenzyme A substituted for CoA showing that the cofactor plays a structural rather than a catalytic role. Ferredoxin was not necessary for the pyruvate decarboxylase activity of POR, nor did it inhibit acetaldehyde production. The apparent Km values for CoA and pyruvate were 0.11 mM and 1.1 mM, respectively, and the optimal temperature for acetaldehyde formation was above 90°C. These data are comparable to those previously determined for the pyruvate oxidation reaction of POR. At 80°C (pH 8.0), the apparent Vm value for pyruvate decarboxylation was about 40% of the apparent Vm value for pyruvate oxidation rate (using P. furiosus ferredoxin as the electron acceptor). Tentative catalytic mechanisms for these two reactions are presented. In addition to POR, three other 2-keto acid ferredoxin oxidoreductases are involved in peptide fermentation by hyperthermophilic archaea. It is proposed that the various aldehydes produced by these oxidoreductases in vivo are used by two aldehyde-utilizing enzymes, alcohol dehydrogenase and aldehyde ferredoxin oxidoreductase, the physiological roles of which were previously unknown.
Resumo:
The plant pathogenic bacterium Erwinia chrysanthemi secretes pectate lyase proteins that are important virulence factors attacking the cell walls of plant hosts. Bacterial production of these enzymes is induced by the substrate polypectate-Na (NaPP) and further stimulated by the presence of plant extracts. The bacterial regulator responsible for induction by plant extracts was identified and purified by using a DNA-binding assay with the promoter region of pelE that encodes a major pectate lyase. A novel bacterial protein, called Pir, was isolated that produced a specific gel shift of the pelE promoter DNA, and the corresponding pir gene was cloned and sequenced. The Pir protein contains 272 amino acids with a molecular mass of 30 kDa and appears to function as a dimer. A homology search indicates that Pir belongs to the IclR family of transcriptional regulators. Pir bound to a 35-bp DNA sequence in the promoter region of pelE. This site overlaps that of a previously described negative regulator, KdgR. Gel shift experiments showed that the binding of either Pir or KdgR interfered with binding of the other protein.
Resumo:
Phenylketonuria (PKU), with its associated hyperphenylalaninemia (HPA) and mental retardation, is a classic genetic disease and the first to have an identified chemical cause of impaired cognitive development. Treatment from birth with a low phenylalanine diet largely prevents the deviant cognitive phenotype by ameliorating HPA and is recognized as one of the first effective treatments of a genetic disease. However, compliance with dietary treatment is difficult and when it is for life, as now recommended by an internationally used set of guidelines, is probably unrealistic. Herein we describe experiments on a mouse model using another modality for treatment of PKU compatible with better compliance using ancillary phenylalanine ammonia lyase (PAL, EC 4.3.1.5) to degrade phenylalanine, the harmful nutrient in PKU; in this treatment, PAL acts as a substitute for the enzyme phenylalanine monooxygenase (EC 1.14.16.1), which is deficient in PKU. PAL, a robust enzyme without need for a cofactor, converts phenylalanine to trans-cinnamic acid, a harmless metabolite. We describe (i) an efficient recombinant approach to produce PAL enzyme, (ii) testing of PAL in orthologous N-ethyl-N′-nitrosourea (ENU) mutant mouse strains with HPA, and (iii) proofs of principle (PAL reduces HPA)—both pharmacologic (with a clear dose–response effect vs. HPA after PAL injection) and physiologic (protected enteral PAL is significantly effective vs. HPA). These findings open another way to facilitate treatment of this classic genetic disease.
Resumo:
The generation of reactive oxygen species in the cell provokes, among other lesions, the formation of 8-oxo-7,8-dihydroguanine (8-oxoG) in DNA. Due to mispairing with adenine during replication, 8-oxoG is highly mutagenic. To minimise the mutagenic potential of this oxidised purine, human cells have a specific 8-oxoG DNA glycosylase/AP lyase (hOGG1) that initiates the base excision repair (BER) of 8-oxoG. We show here that in vitro this first enzyme of the BER pathway is relatively inefficient because of a high affinity for the product of the reaction it catalyses (half-life of the complex is >2 h), leading to a lack of hOGG1 turnover. However, the glycosylase activity of hOGG1 is stimulated by the major human AP endonuclease, HAP1 (APE1), the enzyme that performs the subsequent step in BER, as well as by a catalytically inactive mutant (HAP1-D210N). In the presence of HAP1, the AP sites generated by the hOGG1 DNA glycosylase can be occupied by the endonuclease, avoiding the re-association of hOGG1. Moreover, the glycosylase has a higher affinity for a non-cleaved AP site than for the cleaved DNA product generated by HAP1. This would shift the equilibrium towards the free glycosylase, making it available to initiate new catalytic cycles. In contrast, HAP1 does not affect the AP lyase activity of hOGG1. This stimulation of only the hOGG1 glycosylase reaction accentuates the uncoupling of its glycosylase and AP lyase activities. These data indicate that, in the presence of HAP1, the BER of 8-oxoG residues can be highly efficient by bypassing the AP lyase activity of hOGG1 and thus excluding a potentially rate limiting step.
Resumo:
Clostridium cellulovorans uses not only cellulose but also xylan, mannan, pectin, and several other carbon sources for its growth and produces an extracellular multienzyme complex called the cellulosome, which is involved in plant cell wall degradation. Here we report a gene for a cellulosomal subunit, pectate lyase A (PelA), lying downstream of the engY gene, which codes for cellulosomal enzyme EngY. pelA is composed of an ORF of 2,742 bp and encodes a protein of 914 aa with a molecular weight of 94,458. The amino acid sequence derived from pelA revealed a multidomain structure, i.e., an N-terminal domain partially homologous to the C terminus of PelB of Erwinia chrysanthemi belonging to family 1 of pectate lyases, a putative cellulose-binding domain, a catalytic domain homologous to PelL and PelX of E. chrysanthemi that belongs to family 4 of pectate lyases, and a duplicated sequence (or dockerin) at the C terminus that is highly conserved in enzymatic subunits of the C. cellulovorans cellulosome. The recombinant truncated enzyme cleaved polygalacturonic acid to digalacturonic acid (G2) and trigalacturonic acid (G3) but did not act on G2 and G3. There have been no reports available to date on pectate lyase genes from Clostridia.