936 resultados para Purinergic P2Y Receptor Antagonists


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is an attempt to understand the role of acetylcholine muscarinic M1 and M3 receptors during pancreatic regeneration and insulin secretion. The work focuses on the changes in the muscarinic M1 and M3 receptors in brain and pancreas during pancreatic regeneration. The effect of these receptor subtypes on insulin secretion and pancreatic P-cell proliferation were studied in vitro using rat primary pancreatic islet culture. Muscarinic Ml and M3 receptor kinetics and gene expression studies during pancreatic regeneration and insulin secretion will help to elucidate the role of acetylcholine functional regulation of pancreatic u-cell proliferation and insulin secretion.The cholinergic system through muscarinic M1 and M3 receptors play an important role in the regulation of pancreatic (3-cell proliferation and insulin secretion . Cholinergic activity as indicated by acetylcholine esterase, a marker for cholinergic system, decreased in the brain regions - hypothalamus, brain stem, corpus striatum, cerebral cortex and cerebellum during pancreatic regeneration. Pancreatic muscarinic M1 and M3 receptor activity increased during proliferation indicating that both receptors are stimulatory to (3-cell division. Acetylcholine dose dependently increase EGF induced DNA synthesis in pancreatic islets in vitro, which is inhibited by muscarinic antagonist atropine confirming the role of muscarinic receptors. Muscarinic M1 and M3 receptor antagonists also block acetycholine induced DNA synthesis suggesting the importance of these receptors in regeneration. Acetylcholine also stimulated glucose induced insulin secretion in vitro which is inhibited by muscarinic M1 and M3 receptor antagonists. The muscarinic receptors activity and their functional balance in the brain and pancreas exert a profound influence in the insulin secretion and also regeneration of pancreas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction of G-protein-coupled receptors with beta-arrestins is an important step in receptor desensitization and in triggering "alternative" signals. By means of confocal microscopy and fluorescence resonance energy transfer, we have investigated the internalization of the human P2Y receptors 1, 2, 4, 6, 11, and 12 and their interaction with beta-arrestin-1 and -2. Co-transfection of each individual P2Y receptor with beta-arrestin-1-GFP or beta-arrestin-2-YFP into HEK-293 cells and stimulation with the corresponding agonists resulted in a receptor-specific interaction pattern. The P2Y(1) receptor stimulated with ADP strongly translocated beta-arrestin-2-YFP, whereas only a slight translocation was observed for beta-arrestin-1-GFP. The P2Y(4) receptor exhibited equally strong translocation for beta-arrestin-1-GFP and beta-arrestin-2YFP when stimulated with UTP. The P2Y(6), P2Y(11), and P2Y(12) receptor internalized only when GRK2 was additionally cotransfected, but beta-arrestin translocation was only visible for the P2Y(6) and P2Y(11) receptor. The P2Y(2) receptor showed a beta-arrestin translocation pattern that was dependent on the agonist used for stimulation. UTP translocated beta-arrestin-1-GFP and beta-arrestin-2-YFP equally well, whereas ATP translocated beta-arrestin-1-GFP to a much lower extent than beta-arrestin2- YFP. The same agonist-dependent pattern was seen in fluorescence resonance energy transfer experiments between the fluorescently labeled P2Y(2) receptor and beta-arrestins. Thus, the P2Y(2) receptor would be classified as a class A receptor when stimulated with ATP or as a class B receptor when stimulated with UTP. The ligand-specific recruitment of beta-arrestins by ATP and UTP stimulation of P2Y(2) receptors was further found to result in differential stimulation of ERK phosphorylation. This suggests that the two different agonists induce distinct active states of this receptor that show differential interactions with beta-arrestins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although contraction of human isolated bronchi is mediated mainly by tachykinin NK2 receptors, NK1 receptors, via prostanoid release, contract small-size (approximately 1 mm in diameter) bronchi. Here, we have investigated the presence and biological responses of NK1 receptors in medium-size (2-5 mm in diameter) human isolated bronchi. Specific staining was seen in bronchial sections with an antibody directed against the human NK1 receptor. The selective NK1 receptor agonist, [Sar(9), Met(O2)(11)]SP, contracted about 60% of human isolated bronchial rings. This effect was reduced by two different NK1 receptor antagonists, CP-99,994 and SR 140333. Contraction induced by [Sar(9), Met(O2)(11)]SP was independent of acetylcholine and histamine release and epithelium removal, and was not affected by nitric oxide synthase and cyclooxygenase (COX) inhibition. [Sar(9), Met(O2)(11)]SP increased inositol phosphate (IP) levels, and SR 140333 blocked this increase, in segments of medium- and small-size (approximately 1 mm in diameter) human bronchi. COX inhibition blocked the IP increase induced by [Sar(9), Met(O2)(11)]SP in small-size, but not in medium-size, bronchi. NK1 receptors mediated bronchoconstriction in a large proportion of medium-size human bronchi. Unlike small-size bronchi this effect is independent of prostanoid release, and the results are suggestive of a direct activation of smooth muscle receptors and IP release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protease activated receptor-2 (PAR-2) belongs to a family of G-protein-coupled receptors that are activated by proteolysis. Trypsin cleaves PAR-2, exposing an N-terminal tethered ligand (SLIGRL) that activates the receptor. Messenger RNA (mRNA) for PAR-2 was found in guinea pig airway tissue by reverse transcription-polymerase chain reaction, and PAR-2 was found by immunohistochemistry in airway epithelial and smooth-muscle cells. In anesthetized guinea pigs, trypsin and SLIGRL-NH(2) (given intratracheally or intravenously) caused a bronchoconstriction that was inhibited by the combination of tachykinin-NK(1) and -NK(2) receptor antagonists and was potentiated by inhibition of nitric oxide synthase (NOS). Trypsin and SLIGRL-NH(2) relaxed isolated trachea and main bronchi, and contracted intrapulmonary bronchi. Relaxation of main bronchi was abolished or reversed to contraction by removal of epithelium, administration of indomethacin, and NOS inhibition. PAR-1, PAR-3, and PAR-4 were not involved in the bronchomotor action of either trypsin or SLIGRL-NH(2), because ligands of these receptors were inactive either in vitro or in vivo, and because thrombin (a PAR-1 and PAR-3 agonist) did not show cross-desensitization with PAR-2 agonists in vivo. Thus, we have localized PAR-2 to the guinea-pig airways, and have shown that activation of PAR-2 causes multiple motor effects in these airways, including in vivo bronchoconstriction, which is in part mediated by a neural mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neuropeptide substance P and its receptor NK1 have been implicated in emotion, anxiety and stress in preclinical studies. However, the role of NK1 receptors in human brain function is less clear and there have been inconsistent reports of the value of NK1 receptor antagonists in the treatment of clinical depression. The present study therefore aimed to investigate effects of NK1 antagonism on the neural processing of emotional information in healthy volunteers. Twenty-four participants were randomized to receive a single dose of aprepitant (125 mg) or placebo. Approximately 4 h later, neural responses during facial expression processing and an emotional counting Stroop word task were assessed using fMRI. Mood and subjective experience were also measured using self-report scales. As expected a single dose of aprepitant did not affect mood and subjective state in the healthy volunteers. However, NK1 antagonism increased responses specifically during the presentation of happy facial expressions in both the rostral anterior cingulate and the right amygdala. In the emotional counting Stroop task the aprepitant group had increased activation in both the medial orbitofrontal cortex and the precuneus cortex to positive vs. neutral words. These results suggest consistent effects of NK1 antagonism on neural responses to positive affective information in two different paradigms. Such findings confirm animal studies which support a role for NK1 receptors in emotion. Such an approach may be useful in understanding the effects of novel drug treatments prior to full-scale clinical trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study the effects of bradykinin receptor antagonists were investigated in a murine model of asthma using BALB/c mice immunized with ovalbumin/alum and challenged twice with aerosolized ovalbumin. Twenty four hours later eosinophil proliferation in the bone marrow, activation (lipid bodies formation), migration to lung parenchyma and airways and the contents of the pro-angiogenic and pro-fibrotic cytokines TGF-beta and VEGF were determined. The antagonists of the constitutive B(2) (HOE 140) and inducible B(1) (R954) receptors were administered intraperitoneally 30 min before each challenge. In sensitized mice, the antigen challenge induced eosinophil proliferation in the bone marrow, their migration into the lungs and increased the number of lipid bodies in these cells. These events were reduced by treatment of the mice with the B(1) receptor antagonist. The B(2) antagonist increased the number of eosinophils and lipid bodies in the airways without affecting eosinophil counts in the other compartments. After challenge the airway levels of VEGF and TGF-beta significantly increased and the B(1) receptor antagonist caused a further increase. By immunohistochemistry techniques TGF-beta was found to be expressed in the muscular layer of small blood vessels and VEGF in bronchial epithelial cells. The B(1) receptors were expressed in the endothelial cells. These results showed that in a murine model of asthma the B(1) receptor antagonist has an inhibitory effect on eosinophils in selected compartments and increases the production of cytokines involved in tissue repair. It remains to be determined whether this effects of the B(1) antagonist would modify the progression of the allergic inflammation towards resolution or rather towards fibrosis. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

5-HT(1A) receptor antagonists have been employed to treat depression, but the lack of structural information on this receptor hampers the design of specific and selective ligands. In this study, we have performed CoMFA studies on a training set of arylpiperazines (high affinity 5-HT(1A) receptor ligands) and to produce an effective alignment of the data set, a pharmacophore model was produced using Galahad. A statistically significant model was obtained, indicating a good internal consistency and predictive ability for untested compounds. The information gathered from our receptor-independent pharmacophore hypothesis is in good agreement with results from independent studies using different approaches. Therefore, this work provides important insights on the chemical and structural basis involved in the molecular recognition of these compounds. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O fator de crescimento do nervo (NGF) pode retardar a degeneração celular na retina de ratos em diferentes injúrias retinianas. O acúmulo de água em células da retina contribui para o desenvolvimento de edema retiniano e degeneração neuronal. Em atribuição ao seu efeito protetor, este trabalho teve por objetivo avaliar se o NGF influencia o edema celular osmótico em células de Müller e células bipolares. Assim, montagens planas, fatias de retina e células isoladas da retina de ratos foram superfundidas com solução hipo-osmótica na presença de BaCl2. Secções retinianas foram utilizadas para imunomarcações, e a liberação de adenosina foi medida por cromatografia líquida de alta eficácia, em montagens planas. A área de secção transversal celular foi medida antes e após a superfusão em meio hipo-osmótico, em fatias de retina e suspensões celulares. Tanto células de Müller quanto células bipolares foram imunopositivas para TrkA, mas somente células de Müller foram marcadas contra p75NTR e NGF. A hipo-osmolaridade induziu um rápido e significativo aumento da liberação de adenosina endógena em retinas controle, mas não em retinas perfundidas com BaCl2. O NGF inibiu o edema citotóxico em células de Müller e em células bipolares em fatias de retina controle e retinas pós-isquêmicas submetidas a condições hipo-osmóticas. Por outro lado, NGF impediu o edema citotóxico da célula de Müller isolada, mas não da célula bipolar isolada (em meio hipo-osmótico contendo íons Ba2+). Isto sugere que NGF induz a liberação de fatores por células de Müller, os quais inibem o edema citotóxico de células bipolares em fatias de retina. O efeito inibitório do NGF sobre o edema citotóxico de células de Müller foi mediado pela ativação do receptor TrkA, mas não de p75NTR, e foi anulado por bloqueadores de receptores metabotrópicos de glutamato, receptores de adenosina A1, e receptores do fator de crescimento de fibroblasto (FGF). O bFGF evitou o edema citotóxico de células de Müller isoladas, mas inibiu somente em parte o edema citotóxico de células bipolares isoladas. O bloqueio de FGFR impediu o efeito inibidor de edema celular da adenosina, sugerindo que a liberação de bFGF ocorre após à ativação autócrina/parácrina de receptores Al. Além de bFGF, GDNF e TGF431 reduziram em parte o edema citotóxico da célula bipolar. Estes dados sugerem que o efeito neuroprotetor do NGF é em parte mediado pela prevenção de edema citotóxico de células gliais e bipolares da retina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelins (ETs) are involved in several inflammatory events. The present study investigated the efficacy of bosentan, a dual ETA/ETB receptor antagonist, in collagen-induced arthritis (CIA) in mice. CIA was induced in DBA/1J mice. Arthritic mice were treated with bosentan (100 mg/kg) once a day, starting from the day when arthritis was clinically detectable. CIA progression was assessed by measurements of visual clinical score, paw swelling and hypernociception. Histological changes, neutrophil infiltration and pro-inflammatory cytokines were evaluated in the joints. Gene expression in the lymph nodes of arthritic mice was evaluated by microarray technology. PreproET-1 mRNA expression in the lymph nodes of mice and in peripheral blood mononuclear cells (PBMCs) was evaluated by real-time PCR. The differences were evaluated by one-way ANOVA or Student's t test. Oral treatment with bosentan markedly ameliorated the clinical aspects of CIA (visual clinical score, paw swelling and hyperalgesia). Bosentan treatment also reduced joint damage, leukocyte infiltration and pro-inflammatory cytokine levels (IL-1 beta, TNF alpha and IL-17) in the joint tissues. Changes in gene expression in the lymph nodes of arthritic mice returned to the levels of the control mice after bosentan treatment. PreproET mRNA expression increased in PBMCs from rheumatoid arthritis (RA) patients but returned to basal level in PBMCs from patients under anti-TNF therapy. In-vitro treatment of PBMCs with TNF alpha upregulated ET system genes. These findings indicate that ET receptor antagonists, such as bosentan, might be useful in controlling RA. Moreover, it seems that ET mediation of arthritis is triggered by TNF alpha.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uridine adenosine tetraphosphate (Up(4)A) has been recently identified as a novel and potent endothelium-derived contracting factor and contains both purine and pyrimidine moieties, which activate purinergic P2X and P2Y receptors. The present study was designed to compare contractile responses to Up(4)A and other nucleotides such as ATP (P2X/P2Y agonist), UTP (P2Y(2)/P2Y(4) agonist), UDP (P2Y(6) agonist), and alpha,beta-methylene ATP (P2X(1) agonist) in different vascular regions [thoracic aorta, basilar, small mesenteric, and femoral arteries] from deoxycorticosterone acetate-salt (DOCA-salt) and control rats. In DOCA-salt rats [vs. control uninephrectomized (Uni) rats]: (1) in thoracic aorta, Up(4)A-, ATP-, and UP-induced contractions were unchanged; (2) in basilar artery, Up(4)A-, ATP-, UTP- and UDP-induced contractions were increased, and expression for P2X(1), but not P2Y(2) or P2Y(6) was decreased; (3) in small mesenteric artery, Up(4)A-induced contraction was decreased and UDP-induced contraction was increased; expression of P2Y(2) and P2X(1) was decreased whereas P2Y(6) expression was increased; (4) in femoral artery, Up(4)A-. UTP-, and UDP-induced contractions were increased, but expression of P2Y(2), P2Y(6) and P2X(1) was unchanged. The alpha,beta-methylene ATP-induced contraction was bell-shaped and the maximal contraction was reached at a lower concentration in basilar and mesenteric arteries from Uni rats, compared to arteries from DOCA-salt rats. These results suggest that Up(4)A-induced contraction is heterogenously affected among various vascular beds in arterial hypertension. P2Y receptor activation may contribute to enhancement of Up(4)A-induced contraction in basilar and femoral arteries. These changes in vascular reactivity to Up(4)A may be adaptive to the vascular alterations produced by hypertension. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular basis for heparin-induced thrombocytopenia (HIT), a relatively common complication of heparin therapy, is not yet fully understood. We found that pretreatment of platelets with AR-C66096 (formerly FPL 66096), a specific platelet adenosine diphosphate (ADP) receptor antagonist, at a concentration of 100 to 200 nmol/L that blocked ADP-dependent platelet aggregation, resulted in complete loss of platelet aggregation responses to HIT sera. AR-C66096 also totally inhibited HIT serum-induced dense granule release, as judged by measurement of adenosine triphosphate (ATP) release. Apyrase, added to platelets at a concentration that had only minor effects on thrombin- or arachidonic acid-induced aggregation, also blocked completely HIT serum-induced platelet aggregation. Furthermore, AR-C66096 inhibited platelet aggregation and ATP release induced by cross-linking Fc gamma RIIA with specific antibodies. These data show that released ADP and the platelet ADP receptor play a pivotal role in HIT serum-induced platelet activation/aggregation. The thromboxane receptor inhibitor, Daltroban, had no effect on HIT serum-induced platelet activation whereas GPIIb-IIIa antagonists blocked platelet aggregation but had only a moderate effect on HIT serum-induced dense granule release. Pretreatment of platelets with chondroitinases but not with heparinases resulted in concentration dependent inhibition of HIT serum-induced platelet aggregation. These novel data relating to the mechanism of platelet activation induced by HIT sera suggest that the possibility should be examined that ADP receptor antagonists or compounds that inhibit ADP release may be effective as therapeutic agents for the prevention or treatment of complications associated with heparin therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing evidence to suggest that chronic activation of the endothelin-1 system can lead to heterologous desensitization of the glucose-regulatory and mitogenic actions of insulin with subsequent development of glucose intolerance, hyperinsulinemia, impaired endothelial function and exacerbation of cardiovascular disease. Effects are mediated through a variety of mechanisms that include attenuation of key insulin signalling pathways and decreased tyrosine phosphorylation of insulin receptor substrates IRS-1, SHC and G alpha q/11. Other actions involve hemodynamic changes leading to reduced delivery of insulin and glucose to peripheral tissues as well as enhanced hepatic glycogenolysis, decreased glucose-transporter translocation and modulation of various adipokines that regulate insulin action. Overall the data suggest that ET-1 antagonists may provide an effective means of improving cardiac dysfunction and favourably influencing glucose tolerance in obese humans and patients with early insulin sensitivity where there is clear evidence for activation of the ET-1 system. Although most effects of ET-1 that modulate mechanisms leading to glucose intolerance appear to involve the ETA receptor subtype recent data indicates that combined ETA/ETB receptor antagonists may function as effectively as selective ETA blockers. Prospective trials are needed to assess whether ET-1 antagonists, either alone or in combination, are superior to other more conventional therapies such as insulin sensitizers and to evaluate effects of combined treatments on the development of insulin resistance and the progression of diabetes. Early screening of patients at risk for evidence of ET-1 activation would help to identify subjects who may benefit most from such treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose: The antimalarial compounds quinine, chloroquine and mefloquine affect the electrophysiological properties of Cys-loop receptors and have structural similarities to 5-HT3 receptor antagonists. They may therefore act at 5-HT3 receptors. Experimental Approach: The effects of quinine, chloroquine and mefloquine on electrophysiological and ligand binding properties of 5-HT3A receptors expressed in HEK 293 cells and Xenopus oocytes were examined. The compounds were also docked into models of the binding site. Key Results: 5-HT3 responses were blocked with IC50 values of 13.4 μM, 11.8 μM and 9.36 μM for quinine, chloroquine and mefloquine. Schild plots indicated quinine and chloroquine behaved competitively with pA2 values of 4.92 (KB=12.0 μM) and 4.97 (KB=16.4 μM). Mefloquine displayed weakly voltage-dependent, non-competitive inhibition consistent with channel block. On and off rates for quinine and chloroquine indicated a simple bimolecular reaction scheme. Quinine, chloroquine and mefloquine displaced [3H]granisetron with Ki values of 15.0, 24.2 and 35.7 μM. Docking of quinine into a homology model of the 5-HT3 receptor binding site located the tertiary ammonium between W183 and Y234, and the quinoline ring towards the membrane, stabilised by a hydrogen bond with E129. For chloroquine, the quinoline ring was positioned between W183 and Y234 and the tertiary ammonium stabilised by interactions with F226. Conclusions and Implications: This study shows that quinine and chloroquine competitively inhibit 5-HT3 receptors, while mefloquine inhibits predominantly non-competitively. Both quinine and chloroquine can be docked into a receptor binding site model, consistent with their structural homology to 5-HT3 receptor antagonists.