991 resultados para Purification process


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The destructive impact of improper disposal of heavy metals in the environment increases as a direct result of population explosion, urbanization and industrial expansion and technological developments. Argil are potential materials for adsorption of inorganic and the pelletization of it is required for use in adsorptive columns of fixed bed. The low cost and the possibility of regeneration makes these materials attractive for use in the purification process, capable of removing inorganic compounds in contaminated aquatic environments. In this work was made pellets of a mixture of dolomite and montmorillonite by wet agglomeration, in different percentages. The removal of Pb (II) was investigated through experimental studies, and was modeled by kinetic models and isotherms of adsorption. The materials were characterized using the techniques of XRD, TG / DTA, FT-IR, and surface area by BET method. The results showed the adsorption efficiency of the contaminant by the composite material studied in synthetic solution. The study found that the adsorption follows the Langmuir model, and the kinetics of adsorption follows the model of pseudosecond order

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L - Glutaminase, a therapeutically and industrially important enzyme, was produced from marine Vibrio costicola by a novel solid state fermentation process using polystyrene beads as inert support. The new fermentation system offered several advantages over the conventional systems, such as the yield of leachate with minimum viscosity and high specific activity for the target product besides facilitating the easy estimation of biomass. The enzyme thus produced was purified and characterised. It was active at physiological pH, showed high substrate specificity towards L - glutamine and had a Km value of 7.4 x 10-2 M. It also exhibited high salt and temperature tolerance indicating good scope for its industrial and therapeutic applications

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Surfactin is a bacterial lipopeptide produced by Bacillus subtilis and it is a powerful surfactant, having also antiviral, antibacterial and antitumor properties. The recovery and purification of surfactin from complex fermentation broths is a major obstacle to its commercialization; therefore, two-step membrane filtration processes were evaluated using centrifugal and stirred cell devices while the mechanisms of separation were investigated by particle size and surface charge measurements. In a first step of ultrafiltration (UF-1), surfactin was retained effectively by membranes at above its critical micelle concentration (CMC); subsequently in UF-2, the retentate micelles were disrupted by addition of 50% (v/v) methanol solution to allow recovery of surfactin in the permeate. Main protein contaminants were effective]), retained by the membrane in UF-2. Ultrafiltration was carried out either using centrifugal devices with 30 and 10 kDa MWCO regenerated cellulose membranes, or a stirred cell device with 10 kDa MWCO polyethersulfone (PES) and regenerated cellulose (RC) membranes. Total rejection of surfactin was consistently observed in UF-1, while in UF-2 PES membranes had the lowest rejection coefficient of 0.08 +/- 0.04. It was found that disruption of surfactin micelles, aggregation of protein contaminants and electrostatic interactions in UF-2 can further improve the selectivity of the membrane based purification technique. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synthesis of prebiotic alpha- and beta-galactooligosaccharides (GOS) using the whole cells of Bifidobacterium bifidum NCIMB 41171 was investigated. Determination of alpha- and beta-galactosidase activities showed them to be at 3 and 205 g(-1) of freeze dried biomass, respectively, and they increased to 5 and 344 U g(-1), respectively, when cells were treated with toluene. Starting with 450-500 mg mL(-1) lactose, maximum GOS concentrations were observed at 80-85% lactose conversions and the mixtures contained oligosaccharides (with a degree of polymerisation >= 3) at 77-109 mg mL(-1) and trans-galactosylated disaccharides between 85-115 mg mL(-1). The GOS yield values varied between 36% and 43%. An alpha-linked disaccharide was detected and its presence was confirmed by gas chromatography mass spectroscopy. Cells were re-used up to 8 times without changes in reaction times or the substrate conversions to GOS. Oligosaccharide synthesis was not inhibited by the presence of glucose or galactose. The mixtures were successfully purified from glucose (92% of glucose removed) by fermentation with Saccharomyces cerevisiae with no losses in the oligosaccharide content and only a small decrease on the galactose. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oil palm empty fruit bunches (OPEFB) fibre, a by-product generated from non-woody, tropical perennial oil palm crop was evaluated for xylooligosaccharides (XOS) production. Samples of OPEFB fibre were subjected to non-isothermal autohydrolysis treatment using a temperature range from 150 to 220 °C. The highest XOS concentration, 17.6 g/L which relayed from solubilisation of 63 g/100 g xylan was achieved at 210 °C and there was a minimum amount of xylose and furfural being produced. The chromatographic purification which was undertaken to purify the oligosaccharide-rich liquor resulted in a product with 74–78% purity, of which 83–85% was XOS with degree of polymerisation (DP) between 5 and 40.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Following previous studies, the aim of this work is to further investigate the application of colloidal gas aphrons (CGA) to the recovery of polyphenols from a grape marc ethanolic extract with particular focus on exploring the use of a non-ionic food grade surfactant (Tween 20) as an alternative to the more toxic cationic surfactant CTAB. Different batch separation trials in a flotation column were carried out to evaluate the influence of surfactant type and concentration and processing parameters (such as pH, drainage time, CGA/extract volumetric and molar ratio) on the recovery of total and specific phenolic compounds. The possibility of achieving selective separation and concentration of different classes of phenolic compounds and non-phenolic compounds was also assessed, together with the influence of the process on the antioxidant capacity of the recovered compounds. The process led to good recovery, limited loss of antioxidant capacity, but low selectivity under the tested conditions. Results showed the possibility of using Tween 20 with a separation mechanism mainly driven by hydrophobic interactions. Volumetric ratio rather than the molar ratio was the key operating parameter in the recovery of polyphenols by CGA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ascorbate oxidase is the enzyme used to determine the content of ascorbic acid in the pharmaceutical and food industries and clinics analyses. The techniques currently used for the purification of this enzyme raise its production cost. Thus, the development of alternative processes and with the potential to reduce costs is interesting. The application of aqueous two-phase system is proposed as an alternative to purification because it enables good separation of biomolecules. The objective of this study was to determine the conditions to continuously pre-purify the enzyme ascorbate oxidase by an aqueous two-phase system (PEG/citrate) using rotating column provided with perforated discs. Under the best conditions (20,000 g/mol PEG molar mass, 10% PEG concentration, and 25% citrate concentration), the system showed satisfactory results (partition coefficient, 3.35; separation efficiency, 54.98%; and purification factor, 1.46) and proved suitable for the pre-purification of ascorbate oxidase in continuous process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scope of this research work was to investigate biogas production and purification by a two-step bench-scale biological system, consisting of fed-batch pulse-feeding anaerobic digestion of mixed sludge, followed by methane enrichment of biogas by the use of the cyanobacterium Arthrospira platensis. The composition of biogas was nearly constant, and methane and carbon dioxide percentages ranged between 70.5-76.0% and 13.2-19.5%, respectively. Biogas yield reached a maximum value (about 0.4 m(biogas)(3)/kgCOD(i)) at 50 days-retention time and then gradually decreased with a decrease in the retention time. Biogas CO(2) was then used as a carbon source for A. platensis cultivation either under batch or fed-batch conditions. The mean cell productivity of fed-batch cultivation was about 15% higher than that observed during the last batch phase (0.035 +/- 0.006 g(DM)/L/d), likely due to the occurrence of some shading effect under batch growth conditions. The data of carbon dioxide removal from biogas revealed the existence of a linear relationship between the rates of A. platensis growth and carbon dioxide removal from biogas and allowed calculating carbon utilization efficiency for biomass production of almost 95%. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purification of recombinant human growth hormone (rhGH) from Chinese hamster ovary (CHO) cell culture supernatant by Gradiflow large-scale electrophoresis is described. Production of rhGH in CHO cells is an alternative to production in Escherichia coli, with the advantage that rhGH is secreted into protein-free production media, facilitating a more simple purification and avoiding resolubilization of inclusion bodies and protein refolding. As an alternative to conventional chromatography, rhGH was purified in a one-step procedure using Gradiflow technology. Clarified culture supernatant containing rhGH was passed through a Gradiflow BF200 and separations were performed over 60 min using three different buffers of varying pH. Using a 50 mM Tris/Hepes buffer at pH 7.5 together with a 50 kDa separation membrane, rhGH was purified to approximately 98% purity with a yield of 90%. This study demonstrates the ability of Gradiflow preparative electrophoresis technology to purify rhGH from mammalian cell culture supernatant in a one-step process with high purity and yield. As the Gradiflow is directly scalable, this study also illustrates the potential for the inclusion of the Gradiflow into bioprocesses for the production of clinical grade rhGH and other therapeutic proteins. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND. Secretory epithelial cells of human prostate contain a keratan sulfate proteoglycan (KSPG) associated with the prostatic secretory granules (PSGs). The proteoglycan has not been identified, but like the PSGs, it is lost in the early stages of malignant transformation. METHODS. Anion exchange and affinity chromatography were used to purify KSPG from human prostate tissue. Enzymatic deglycosylation was used to remove keratan sulfate (KS). The core protein was isolated using 2D gel electrophoresis, digested in-gel with trypsin, and identified by peptide mass fingerprinting (PMF). RESULTS. The purified proteoglycan was detected as a broad smear on Western blots with an apparent molecular weight of 65-95 kDa. The KS moiety was susceptible to digestion with keratanase 11 and peptide N-glycosidase F defining it as highly sulfated and N-linked to the core protein. The core protein was identified, following deglycosylation and PMF, as lumican and subsequently confirmed by Western blotting using an anti-lumican antibody. CONCLUSIONS. The KSPG associated with PSGs in normal prostate epithelium is lumican. While the role of lumican in extracellular matrix is well established, its function in the prostate secretory process is not known. It's potential to facilitate packaging of polyamines in PSGs, to act as a tumor suppressor and to mark the early stages of malignant transformation warrant further investigation. (C) 2003 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mycelial beta-glucosidase from the thermophilic mold Humicola insolens was purified and biochemically characterized. The enzyme showed carbohydrate content of 21% and apparent molecular mass of 94 kDa, as estimated by gel filtration. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed a single polypeptide band of 55 kDa, suggesting that the native enzyme was a homodimer. Mass spectrometry analysis showed amino acid sequence similarity with a P-glucosidase from Humicola grisea var. thermoidea, with about 22% coverage. Optima of temperature and pH were 60 degrees C and 6.0-6.5, respectively. The enzyme was stable up to I h at 50 degrees C and showed a half-life of approximately 44 min at 55 degrees C. The beta-glucosidase hydrolyzed cellobiose, lactose, p-nitrophenyl-beta-D-glucopyranoside, p-nitrophenyl-beta-D-fucopyranoside, p-nitrophenyl-beta-D-xylopyranoside, p-nitrophenyl-beta-D-galactopyranoside, o-nitrophenyl-beta-D-galactopyranoside, and salicin. Kinetic studies showed that p-nitrophenyl-beta-D-fucopyranoside and cellobiose were the best enzyme substrates. Enzyme activity was stimulated by glucose or xylose at concentrations up to 400 mM, with maximal stimulatory effect (about 2-fold) around 40 mM. The high catalytic efficiency for the natural substrate, good thermal stability, strong stimulation by glucose or xylose, and tolerance to elevated concentrations of these monosaccharides qualify this enzyme for application in the hydrolysis of cellulosic materials. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein purification that combines the use of molecular mass exclusion membranes with electrophoresis is particularly powerful as it uses properties inherent to both techniques. The use of membranes allows efficient processing and is easily scaled up, while electrophoresis permits high resolution separation under mild conditions. The Gradiflow apparatus combines these two technologies as it uses polyacrylamide membranes to influence electrokinetic separations. The reflux electrophoresis process consists of a series of cycles incorporating a forward phase and a reverse phase. The forward phase involves collection of a target protein that passes through a separation membrane before trailing proteins in the same solution. The forward phase is repeated following clearance of the membrane in the reverse phase by reversing the current. We have devised a strategy to establish optimal reflux separation parameters, where membranes are chosen for a particular operating range and protein transfer is monitored at different pH values. In addition, forward and reverse phase times are determined during this process. Two examples of the reflux method are described. In the first case, we describe the purification strategy for proteins from a complex mixture which contains proteins of higher electrophoretic mobility than the target protein. This is a two-step procedure, where first proteins of higher mobility than the target protein are removed from the solution by a series of reflux cycles, so that the target protein remains as the leading fraction. In the second step the target protein is collected, as it has become the leading fraction of the remaining proteins. In the second example we report the development of a reflux strategy which allowed a rapid one-step preparative purification of a recombinant protein, expressed in Dictyostelium discoideum. These strategies demonstrate that the Gradiflow is amenable to a wide range of applications, as the protein of interest is not necessarily required to be the leading fraction in solution. (C) 1997 Elsevier Science B.V.