314 resultados para Pups
Resumo:
Adverse events in utero are associated with the occurrence of chronic diseases in adulthood. We previously demonstrated in mice that perinatal hypoxia resulted in altered pulmonary circulation in adulthood, with a decreased endothelium-dependent relaxation of pulmonary arteries, associated with long-term alterations in the nitric oxide (NO)/cyclic GMP pathway. The present study investigated whether inhaled NO (iNO) administered simultaneously to perinatal hypoxia could have potential beneficial effects on the adult pulmonary circulation. Indeed, iNO is the therapy of choice in humans presenting neonatal pulmonary hypertension. Long-term effects of neonatal iNO therapy on adult pulmonary circulation have not yet been investigated. Pregnant mice were placed in hypoxia (13% O2) with simultaneous administration of iNO 5 days before delivery until 5 days after birth. Pups were then raised in normoxia until adulthood. Perinatal iNO administration completely restored acetylcholine-induced relaxation, as well as endothelial nitric oxide synthase protein content, in isolated pulmonary arteries of adult mice born in hypoxia. Right ventricular hypertrophy observed in old mice born in hypoxia compared to controls was also prevented by perinatal iNO treatment. Therefore, simultaneous administration of iNO during perinatal hypoxic exposure seems able to prevent adverse effects of perinatal hypoxia on the adult pulmonary circulation.
Resumo:
In a study of congenital transmission during acute infection of Toxoplasma gondii, 23 pregnant Balb/c mice were inoculated orally with two cysts each of the P strain. Eight mice were inoculated 6-11 days after becoming pregnant (Group 1). Eight mice inoculated on the 10th-15th day of pregnancy (Group 2) were treated with 100 mg/kg/day of minocycline 48 h after inoculation. Seven mice inoculated on the 10th-15th day of pregnancy were not treated and served as a control (Group 3). Congenital transmission was evaluated through direct examination of the brains of the pups or by bioassay and serologic tests. Congenital transmission was observed in 20 (60.6%) of the 33 pups of Group 1, in one (3.6%) of the 28 pups of Group 2, and in 13 (54.2%) of the 24 pups of Group 3. Forty-nine Balb/c mice were examined in the study of congenital transmission of T. gondii during chronic infection. The females showed reproductive problems during this phase of infection. It was observed accentuated hypertrophy of the endometrium and myometrium. Only two of the females gave birth. Our results demonstrate that Balb/c mice with acute toxoplasmosis can be used as a model for studies of congenital T. gondii infection. Our observations indicate the potential of this model for testing new chemotherapeutic agents against congenital toxoplasmosis.
Resumo:
Distinct Toxoplasma gondii antigens were entrapped within liposomes and evaluated for their ability to protect Balb/c mice against congenital transmission: soluble tachyzoite antigen (L/STAg), soluble tissue cyst antigen (L/SCAg), soluble tachyzoite plus tissue cyst (L/STCAg) or purified 32kDa antigen of tachyzoite (L/pTAg). Soluble tachyzoite antigen alone in PBS (STAg) or emulsified in Freund's Complete Adjuvant (FCA/STAg) was also evaluated. Dams were inoculated subcutaneously with these antigens 6, 4 and 2 weeks prior to a challenge with four tissue cysts of the P strain of T. gondii orally between 10 and 14 days of pregnancy. Significant diminution differences were observed between the frequency of infected pups born of the dams immunized with the antigens incorporated into liposomes and that of pups born of the dams immunized with antigen emulsified in FCA or non immunized group (p<0.05). There was a significant decrease in the number of pups born dead in the groups L/STAg, L/SCAg and L/pTAg when compared with pups from all other groups (p <0.05). All dams immunized with or without adjuvant showed an antibody response and a proliferation of T-cells. However, no correlation was found between immune response and protection against the challenge.
Resumo:
Recent evidence suggests that transient hyperglycemia in extremely low birth weight infants is strongly associated with the occurrence of retinopathy of prematurity (ROP). We propose a new model of Neonatal Hyperglycemia-induced Retinopathy (NHIR) that mimics many aspects of retinopathy of prematurity. Hyperglycemia was induced in newborn rat pups by injection of streptozocine (STZ) at post natal day one (P1). At various time points, animals were assessed for vascular abnormalities, neuronal cell death and accumulation and activation of microglial cells. We here report that streptozotocin induced a rapid and sustained increase of glycemia from P2/3 to P6 without affecting rat pups gain weight or necessitating insulin treatment. Retinal vascular area was significantly reduced in P6 hyperglycemic animals compared to control animals. Hyperglycemia was associated with (i) CCL2 chemokine induction at P6, (ii) a significant recruitment of inflammatory macrophages and an increase in total number of Iba+ macrophages/microglia cells in the inner nuclear layer (INL), and (iii) excessive apoptosis in the INL. NHIR thereby reproduces several aspects of ischemic retinopathies, including ROP and diabetic retinopathies, and might be a useful model to decipher hyperglycemia-induced cellular and molecular mechanisms in the small rodent.
Resumo:
PURPOSE: The aim of this study was to test whether oligonucleotide-targeted gene repair can correct the point mutation in genomic DNA of PDE6b(rd1) (rd1) mouse retinas in vivo. METHODS: Oligonucleotides (ODNs) of 25 nucleotide length and complementary to genomic sequence subsuming the rd1 point mutation in the gene encoding the beta-subunit of rod photoreceptor cGMP-phosphodiesterase (beta-PDE), were synthesized with a wild type nucleotide base at the rd1 point mutation position. Control ODNs contained the same nucleotide bases as the wild type ODNs but with varying degrees of sequence mismatch. We previously developed a repeatable and relatively non-invasive technique to enhance ODN delivery to photoreceptor nuclei using transpalpebral iontophoresis prior to intravitreal ODN injection. Three such treatments were performed on C3H/henJ (rd1) mouse pups before postnatal day (PN) 9. Treatment outcomes were evaluated at PN28 or PN33, when retinal degeneration was nearly complete in the untreated rd1 mice. The effect of treatment on photoreceptor survival was evaluated by counting the number of nuclei of photoreceptor cells and by assessing rhodopsin immunohistochemistry on flat-mount retinas and sections. Gene repair in the retina was quantified by allele-specific real time PCR and by detection of beta-PDE-immunoreactive photoreceptors. Confirmatory experiments were conducted using independent rd1 colonies in separate laboratories. These experiments had an additional negative control ODN that contained the rd1 mutant nucleotide base at the rd1 point mutation site such that the sole difference between treatment with wild type and control ODN was the single base at the rd1 point mutation site. RESULTS: Iontophoresis enhanced the penetration of intravitreally injected ODNs in all retinal layers. Using this delivery technique, significant survival of photoreceptors was observed in retinas from eyes treated with wild type ODNs but not control ODNs as demonstrated by cell counting and rhodopsin immunoreactivity at PN28. Beta-PDE immunoreactivity was present in retinas from eyes treated with wild type ODN but not from those treated with control ODNs. Gene correction demonstrated by allele-specific real time PCR and by counts of beta-PDE-immunoreactive cells was estimated at 0.2%. Independent confirmatory experiments showed that retinas from eyes treated with wild type ODN contained many more rhodopsin immunoreactive cells compared to retinas treated with control (rd1 sequence) ODN, even when harvested at PN33. CONCLUSIONS: Short ODNs can be delivered with repeatable efficiency to mouse photoreceptor cells in vivo using a combination of intravitreal injection and iontophoresis. Delivery of therapeutic ODNs to rd1 mouse eyes resulted in genomic DNA conversion from mutant to wild type sequence, low but observable beta-PDE immunoreactivity, and preservation of rhodopsin immunopositive cells in the outer nuclear layer, suggesting that ODN-directed gene repair occurred and preserved rod photoreceptor cells. Effects were not seen in eyes treated with buffer or with ODNs having the rd1 mutant sequence, a definitive control for this therapeutic approach. Importantly, critical experiments were confirmed in two laboratories by several different researchers using independent mouse colonies and ODN preparations from separate sources. These findings suggest that targeted gene repair can be achieved in the retina following enhanced ODN delivery.
Resumo:
Lentivector-mediated transgenesis is increasingly used, whether for basic studies as an alternative to pronuclear injection of naked DNA or to test candidate gene therapy vectors. In an effort to characterize the genetic features of this approach, we first measured the frequency of germ line transmission of individual proviruses established by infection of fertilized mouse oocytes. Seventy integrants from 11 founder (G0) mice were passed to 111 first generation (G1) pups, for a total of 255 events corresponding to an average rate of transmission of 44%. This implies that integration had most often occurred at the one- or two-cell stage and that the degree of genotypic mosaicism in G0 mice obtained through this approach is generally minimal. Transmission analysis of eight individual proviruses in 13 G2 mice obtained by a G0-G1 cross revealed only 8% of proviral homozygosity, significantly below the 25% expected from purely Mendelian transmission, suggesting counter-selection due to interference with the functions of targeted loci. Mapping of 239 proviral integration sites in 49 founder animals revealed that about 60% resided within annotated genes, with a marked tendency for clustering in the middle of the transcribed region, and that integration was not influenced by the transcriptional orientation. Transcript levels of a set of arbitrarily chosen target genes were significantly higher in two-cell embryos than in embryonic stem cells or adult somatic cells, suggesting that, as previously noted in other settings, lentiviral vectors integrate preferentially into regions of the genome that are transcriptionally active or poised for activation.
Resumo:
Mechanical ventilation (MV) is life-saving but potentially harmful for lungs of premature infants. So far, animal models dealt with the acute impact of MV on immature lungs, but less with its delayed effects. We used a newborn rodent model including non-surgical and therefore reversible intubation with moderate ventilation and hypothesized that there might be distinct gene expression patterns after a ventilation-free recovery period compared to acute effects directly after MV. Newborn rat pups were subjected to 8 hr of MV with 60% oxygen (O(2) ), 24 hr after injection of lipopolysaccharide (LPS), intended to create a low inflammatory background as often recognized in preterm infants. Animals were separated in controls (CTRL), LPS injection (LPS), or full intervention with LPS and MV with 60% O(2) (LPS + MV + O(2) ). Lungs were recovered either directly following (T:0 hr) or 48 hr after MV (T:48 hr). Histologically, signs of ventilator-induced lung injury (VILI) were observed in LPS + MV + O(2) lungs at T:0 hr, while changes appeared similar to those known from patients with chronic lung disease (CLD) with fewer albeit larger gas exchange units, at T:48 hr. At T:0 hr, LPS + MV + O(2) increased gene expression of pro-inflammatory MIP-2. In parallel anti-inflammatory IL-1Ra gene expression was increased in LPS and LPS + MV + O(2) groups. At T:48 hr, pro- and anti-inflammatory genes had returned to their basal expression. MMP-2 gene expression was decreased in LPS and LPS + MV + O(2) groups at T:0 hr, but no longer at T:48 hr. MMP-9 gene expression levels were unchanged directly after MV. However, at T:48 hr, gene and protein expression increased in LPS + MV + O(2) group. In conclusion, this study demonstrates the feasibility of delayed outcome measurements after a ventilation-free period in newborn rats and may help to further understand the time-course of molecular changes following MV. The differences obtained from the two time points could be interpreted as an initial transitory increase of inflammation and a delayed impact of the intervention on structure-related genes. Pediatr Pulmonol. 2012; 47:1204-1214. © 2012 Wiley Periodicals, Inc.
Resumo:
Maternal malnutrition during the lactation period in early development may have long-term programming effects on adult offspring. We evaluated the combined effects of parasitological behaviour and histopathological features and malnutrition during lactation. Lactating mice and their pups were divided into a control group (fed a normal diet of 23% protein), a protein-restricted group (PR) (fed a diet containing 8% protein) and a caloric-restricted group (CR) (fed according to the PR group intake). At the age of 60 days, the offspring were infected with Schistosoma mansoni cercariae and killed at nine weeks post-infection. Food intake, body and liver masses, leptinaemia, corticosteronaemia, collagen morphometry and neogenesis and the cellular composition of liver granulomas were studied. PR offspring showed reduced weight gain and hypophagia, whereas CR offspring became overweight and developed hyperphagia. The pre-patent period was longer (45 days) in both programmed offspring as compared to controls (40 days). The PR-infected group had higher faecal and intestinal egg output and increased liver damage. The CR-infected group showed a lower number of liver granulomas, increased collagen neogenesis and a higher frequency of binucleate hepatocytes, suggesting a better modulation of the inflammatory response and increased liver regeneration. Taken together, our findings suggest that neonatal malnutrition of offspring during lactation affects the outcome of schistosomiasis in mice.
Resumo:
Iteroparous organisms maximize their overall fitness by optimizing their reproductive effort over multiple reproductive events. Hence, changes in reproductive effort are expected to have both short- and long-term consequences on parents and their offspring. In laboratory rodents, manipulation of reproductive efforts during lactation has however revealed few short-term reproductive adjustments, suggesting that female laboratory rodents express maximal rather than optimal levels of reproductive investment as observed in semelparous organisms. Using a litter size manipulation (LSM) experiment in a small wild-derived rodent (the common vole; Microtus arvalis), we show that females altered their reproductive efforts in response to LSM, with females having higher metabolic rates and showing alternative body mass dynamics when rearing an enlarged rather than reduced litter. Those differences in female reproductive effort were nonetheless insufficient to fully match their pups' energy demand, pups being lighter at weaning in enlarged litters. Interestingly, female reproductive effort changes had long-term consequences, with females that had previously reared an enlarged litter being lighter at the birth of their subsequent litter and producing lower quality pups. We discuss the significance of using wild-derived animals in studies of reproductive effort optimization.
Resumo:
Extremely preterm infants commonly show brain injury with long-term structural and functional consequences. Three-day-old (P3) rat pups share some similarities in terms of cerebral development with the very preterm infant (born at 24-28 weeks of gestation). The aim of this study was to assess longitudinally the cerebral structural and metabolic changes resulting from a moderate neonatal hypoxic ischemic injury in the P3 rat pup using high-field (9.4 T) MRI and localized (1) H magnetic resonance spectroscopy techniques. The rats were scanned longitudinally at P3, P4, P11, and P25. Volumetric measurements showed that the percentage of cortical loss in the long term correlated with size of damage 6 h after hypoxia-ischemia, male pups being more affected than female. The neurochemical profiles revealed an acute decrease of most of metabolite concentrations and an increase in lactate 24 h after hypoxia-ischemia, followed by a recovery phase leading to minor metabolic changes at P25 in spite of an abnormal brain development. Further, the increase of lactate concentration at P4 correlated with the cortical loss at P25, giving insight into the early prediction of long-term cerebral alterations following a moderate hypoxia-ischemia insult that could be of interest in clinical practice.