903 resultados para Pulsões
Resumo:
A pulse-compression scheme based on cascade of filamentation and hollow fiber has been demonstrated, Pulses with duration of sub-5 fs and energy of 0.2 mJ near 800 nm have been generated by compressing the similar to 40 fs pulses from a commercial laser system. This method is promising to generate near monocycle high energy pulses. [GRAPHICS] Measured autocorrelation curve of the final compressed pulses with duration of sub-5 fs (black solid) and the simulated autocorrelation curve of 4.6 fs pulse near 800 rim (red dash) (C) 2008 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
This paper reports that Coulomb explosions taken place in the experiment of heteronuclear deuterated methane clusters ((CD4)(n)) in a gas jet subjected to intense femtosecond laser pulses (170 mJ, 70 fs) have led to table-top laser driven DD nuclear fusion. The clusters produced in supersonic expansion had an average energies of deuterons produced in the laser-cluster interaction were 60 and 1.5 KeV, respectively. From DD collisons of energetic deuterons, a yield of 2.5(+/-0.4)x10(4) fusion neutrons of 2.45 MeV per shot was realized, giving rise to a neutron production efficiency of about 1.5 x 10(5) per joule of incident laser pulse energy. Theoretical calculations were performed and a fairly good agreement of the calculated neutron yield with that obtained from the present experiment was found.
Resumo:
The asymmetric photoionization of atoms irradiated by intense, few-cycle laser pulses is studied numerically. The results show that the pulse intensity affects the asymmetric photoionization in three aspects. First, at higher intensities, the asymmetry becomes distinctive for few-cycle pulses of longer durations. Second, as the laser intensity increases, the maximal asymmetry first decreases then increases after it has reached a minimal value. Last, the value of the carrier-envelope phase corresponding to the maximal asymmetry varies with the pulse intensity. This study reveals that the increasing of pulse intensity is helpful for observing the asymmetric photoionization.
Resumo:
We demonstrate the coherent linking of periodic nano-ripples formed on the surface of ZnO crystals induced by femtosecond laser pulses. By adjusting the distance between two laser scanning zones, the periodic nano-ripples induced by two separated laser writing processes can be coherently linked and the ZnO nanograting with much longer grooves is therefore produced. The length limitation of this kind of nanograting previously set by the laser focus size is thus overcome. The micro-Raman mapping technique is used to evaluate the quality of coherent linking, and the underlying physics is discussed. The demonstrated scheme is promising for producing large-size self-organized nanogratings induced by femtosecond laser pulses.
Resumo:
We experimentally investigate the generation of high-order harmonics in a 4-mm-long gas cell using midinfrared femtosecond pulses at various wavelengths of 1240 nm, 1500 nm, and 1800 nm. It is observed that the yield and cutoff energy of the generated high-order harmonics critically depend on focal position, gas pressure, and size of the input beam which can be controlled by an aperture placed in front of the focal lens. By optimizing the experimental parameters, we achieve a cutoff energy at similar to 190 eV with the 1500 nm driving pulses, which is the highest for the three wavelengths chosen in our experiment.
Resumo:
The damage mechanisms and micromachining of 6H SiC are studied by using femtosecond laser pulses at wavelengths between near infrared (NIR) and near ultraviolet (NUV) delivered from an optical parametric amplifier (OPA). Our experimental results indicate that high quality microstructures can be fabricated in SiC crystals. On the basis of the dependence of the ablated area and the laser pulse energy, the threshold fluence of SiC is found to increase with the incident laser wavelength in the visible region, while it remains almost constant for the NIR laser. For the NIR laser pulses, both photoionization and impact ionization play important roles in electronic excitation, while for visible lasers, photoionization plays a more important role.
Resumo:
We show that the peak intensity of single attosecond x-ray pulses is enhanced by 1 or 2 orders of magnitude, the pulse duration is greatly compressed, and the optimal propagation distance is shortened by genetic algorithm optimization of the chirp and initial phase of 5 fs laser pulses. However, as the laser intensity increases, more efficient nonadiabatic self-phase matching can lead to a dramatically enhanced harmonic yield, and the efficiency of optimization decreases in the enhancement and compression of the generated attosecond pulses. (c) 2006 Optical Society of America.
Resumo:
Two collinear femtosecond laser pulses, one at wavelength of 800 nm and the other at 400 nm (double frequency), simultaneously irradiated the surface of ZnSe crystal, which resulted in regular nanograting with period of 180 nm on the whole ablation area. We attribute the formation of the nanograting to be due to the interference between the surface scattered wave of 800 nm lasers and the 400 nm light. The period of the nanograting Lambda is about lambda/2n, where n is refractive index of the sample, and lambda, the laser wavelength. This mechanism is supported by observation of rotation of the nanograting with the polarization of 400 nm light, and by the dependence of Lambda similar to lambda of the nanoripples on the surface of semiconductors and dielectrics.
Resumo:
Photoionization of hydrogen atoms in few-cycle laser pulses is studied numerically. The total ionization probability, the. instantaneous ionization probability; and the partial ionization probabilities in a pair of opposite directions are obtained. The partial ionization probabilities are not always equal to each other which is termed as inversion asymmetry. The variation of asymmetry degree with the CE phase, the pulse duration and the pulse intensity is studied. It is found that the pulse intensity affects the asymmetry degree in many aspects. Firstly, the asymmetry is more distinct at higher intensities than that at lower intensities when the pulse duration exceeds 4 cycles; secondly, the maximal asymmetry in lower intensities varies with the CE phase visibly while at higher intensities riot; thirdly, the partial ionization probabilities equal to each other for some special CE phases. For lower pulse intensities, the corresponding value of CE phase is always 0.5 pi and 1.5 pi, while for higher pulse intensities, the corresponding value varies with the pulse intensity. Similar phenomena were observed in a recent experiment using few-cycle radio-frequency (RF) pulses.
Resumo:
Nonlinear Thomson backscattering of an intense Gaussian laser pulse by a counterpropagating energetic electron is investigated by numerically solving the electron equation of motion taking into account the radiative damping force. The backscattered radiation characteristics are different for linearly and circularly polarized lasers because of a difference in their ponderomotive forces acting on the electron. The radiative electron energy loss weakens the backscattered power, breaks the symmetry of the backscattered-pulse profile, and prolongs the duration of the backscattered radiation. With the circularly polarized laser, an adjustable double-peaked backscattered pulse can be obtained. Such a profile has potential applications as a subfemtosecond x-ray pump and probe with adjustable time delay and power ratio. (c) 2006 American Institute of Physics.
Resumo:
The characteristics of harmonic radiation due to electron oscillation driven by an intense femtosecond laser pulse are analyzed considering a single electron model. An interesting modulated structure of the spectrum is observed and analyzed for different polarization. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width broadening of the high harmonic radiations can be limited. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8x10(6)Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 x 10(16)W/cm(2) laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.
Resumo:
An analytical fluid model for vacuum heating during the oblique incidence by an ultrashort ultraintense p-polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking since the front part of the returning electrons always move slower than the trailing part. This can lead to heating of the plasma at the expense of the wave energy. An estimate for the efficiency of laser energy absorption by the vacuum heating is given. It is also found that for the incident laser intensity parameter, a(L)> 0.5, the absorption rate peaks at an incident angle 45 degrees-52 degrees and it reaches a maximum of 30% at a(L)approximate to 1.5.
Resumo:
The photoionization of H atoms irradiated by few-cycle laser pulses is studied numerically. The variations of the total ionization, the partial ionizations in opposite directions, and the corresponding asymmetry with the carrier-envelope phase in several pulse durations are obtained. We find that besides a stronger modulation on the partial ionizations, the change of pulse duration leads to a shift along carrier-envelope (CE) phase in the calculated signals. The phase shift arises from the nonlinear property of ionization and relates closely to the Coulomb attraction of the parent ion to the ionized electron. Our calculations show good agreement with the experimental observation under similar conditions.
Resumo:
Filamentation formed by self-focusing of intense laser pulses propagating in air is investigated. It is found that the position of filamentation can be controlled continuously by changing the laser power and divergence angle of the laser beam. An analytical model for the process is given.