74 resultados para Pseudotuberculosis
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The genus Yersinia contains three species pathogenic to humans: Y. pestis, Y. enterocolitica e Y. pseudotuberculosis. The pathogenicity of Yersinia is linked to the presence of a 70-kb virulence plasmid (pYV) that is common to the three species and codifies a type III secretion system and a set of virulence proteins, including those known as Yersinia outer proteins (Yops), that are exported by this system when the bacteria encounter host cells. Two Yops translocators (YopB and YopD) are inserted into the host plasma membrane and transport six effectors (YopO, YopH, YopM, YopJ and YopT) across the membrane into the cytosol of the host cell. The Yops effectors interfere with multiple signaling pathways of the infected cell, affecting both the innate and adaptive immune responses. This article focuses on the role of Yops in the modulation of the host immune response.
Resumo:
Data on the occurrence of Yersinia species, other than Y. pestis in Brazil are presented. Over the past 40 years, 767 Yersinia strains have been identified and typed by the National Reference Center on Yersinia spp. other than Y. pestis, using the classical biochemical tests for species characterization. The strains were further classified into biotypes, serotypes and phagetypes when pertinent. These tests led to the identification of Yersinia cultures belonging to the species Y. enterocolitica, Y. pseudotuberculosis, Y. intermedia, Y. frederiksenii and Y. kristensenii. Six isolates could not be classified in any of the known Yersinia species and for this reason were defined as Non-typable (NT). The bio-sero-phagetypes of these strains were diverse. The following species of Yersinia were not identified among the Brazilian strains by the classical phenotypic or biochemical tests: Y. aldovae, Y. rhodei, Y. mollaretti, Y. bercovieri and Y. ruckeri. The Yersinia strains were isolated from clinical material taken from sick and/or healthy humans and animals, from various types of food and from the environment, by investigators of various Institutions localized in different cities and regions of Brazil.
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
O surgimento das plataformas de sequenciamento de nova geração (NGS) proporcionou o aumento do volume de dados produzidos, tornando possível a obtenção de genomas completos. Apesar das vantagens alcançadas com estas plataformas, são observadas regiões de elevada ou baixa cobertura, em relação à média, associadas diretamente ao conteúdo GC. Este viés GC pode afetar análises genômicas e dificultar a montagem de genomas através da abordagem de novo, além de afetar as análises baseadas em referência. Além do que, as maneiras de avaliar o viés GC deve ser adequada para dados com diferentes perfis de relação/associação entre GC e cobertura, tais como linear e quadrático. Desta forma, este trabalho propõe o uso do Coeficiente de Correlação de Pearson (r) para analisar a correlação entre conteúdo GC e Cobertura, permitindo identificar aintensidade da correlação linear e detectar associações não-lineares, além de identificar a relação entre viés GC e as plataformas de sequenciamento. Os sinais positivos e negativos de r também permitem inferir relações diretamente proporcionais e inversamente proporcionais respectivamente. Utilizou-se dados da espécie Corynebacterium pseudotuberculosis, conhecido por serem genomas clonais obtidas através de diferentes tecnologias de sequenciamento para identificar se há relação do viés GC com as plataformas utilizadas.
Resumo:
Caseous lymphadenitis (CLA), caused by Corynebacterium pseudotuberculosis, is a chronic contagious disease that affects small ruminants and still remains an important problem for many lamb-producing countries. Animals are considered clinically infected when occurs abscesses in superficial lymph nodes. Visceral or internal form can coexist which no apparent clinical signs of infection are seen. The best procedure to avoid spread of the disease is elimination of infected animals. However, as the chronic and subclinical nature of the infection of CLA alternative methods are required for detection and screening. In this study, we described the performance of indirect Enzyme-Linked Immunosorbent Assay (ELISA) for diagnosis of CLA in asymptomatics sheep. Also, test culture and biochemical identification were achieved to confirm CLA infection. The serological diagnostic was performed in sheep symptomatics (n=50) and asymptomatics (n=374) from nine flocks. Analysis reported high positivity of 71% for ELISA in 85% of asymptomatic animal for CLA with a sensitivity of 88% and specificity of 31%. Results from ELISA test in asymptomatic animals against culture for caseous lymphadenitis were more specific (97%) and permitted to exclude healthy animals without symptoms. This study concluded that C. pseudotuberculosis infection could be widely disseminated in sheep flocks in Northwestern region of the state of São Paulo, Brazil and only one screening test is not enough. The association with indirect ELISA test and culture could better indicate the real problem of CLA in sheep flocks.
Resumo:
Programa de doctorado: Sanidad animal
Resumo:
Bacterial pathogens have evolved sophisticated mechanisms to interact with their hosts. A specialized type III protein secretion system capable of translocating bacterial proteins into host cells has emerged as a central factor in the interaction between a variety of mammalian and plant pathogenic bacteria with their hosts. Here we describe AvrA, a novel target of the centisome 63 type III protein secretion system of Salmonella enterica. AvrA shares sequence similarity with YopJ of the animal pathogen Yersinia pseudotuberculosis and AvrRxv of the plant pathogen Xanthomonas campestris pv. vesicatoria. These proteins are the first examples of putative targets of type III secretion systems in animal and plant pathogenic bacteria that share sequence similarity. They may therefore constitute a novel family of effector proteins with related functions in the cross-talk of these pathogens with their hosts.
Resumo:
Pathogenic Yersinia spp. carry a large common plasmid that encodes a number of essential virulence determinants. Included in these factors are the Yersinia-secreted proteins called Yops. We analyzed the consequences of wild-type and mutant strains of Yersinia pseudotuberculosis interactions with the macrophage cell line RAW264.7 and murine bone marrow-derived macrophages. Wild-type Y. pseudotuberculosis kills ≈70% of infected RAW264.7 macrophages and marrow-derived macrophages after an 8-h infection. We show that the cell death mediated by Y. pseudotuberculosis is apoptosis. Mutant Y. pseudotuberculosis that do not make any Yop proteins no longer cause host cell death. Attachment to host cells via invasin or YadA is necessary for the cell death phenotype. Several Yop mutant strains that fail to express one or more Yop proteins were engineered and then characterized for their ability to cause host cell death. A mutant with a polar insertion in YpkA Ser/Thr kinase that does not express YpkA or YopJ is no longer able to cause apoptosis. In contrast, a mutant no longer making YopE or YopH (a tyrosine phosphatase) induces apoptosis in macrophages similar to wild type. When yopJ is added in trans to the ypkAyopJ mutant, the ability of this strain to signal programmed cell death in macrophages is restored. Thus, YopJ is necessary for inducing apoptosis. The ability of Y. pseudotuberculosis to promote apoptosis of macrophages in cell culture suggests that this process is important for the establishment of infection in the host and for evasion of the host immune response.
Resumo:
High-efficiency entry of the enteropathogenic bacterium Yersinia pseudotuberculosis into nonphagocytic cells is mediated by the bacterial outer membrane protein invasin. Invasin-mediated uptake requires high affinity binding of invasin to multiple β1 chain integrin receptors on the host eukaryotic cell. Previous studies using inhibitors have indicated that high-efficiency uptake requires tyrosine kinase activity. In this paper we demonstrate a requirement for focal adhesion kinase (FAK) for invasin-mediated uptake. Overexpression of a dominant interfering form of FAK reduced the amount of bacterial entry. Specifically, the autophosphorylation site of FAK, which is a reported site of c-Src kinase binding, is required for bacterial internalization, as overexpression of a derivative lacking the autophosphorylation site had a dominant interfering effect as well. Cultured cells expressing interfering variants of Src kinase also showed reduced bacterial uptake, demonstrating the involvement of a Src-family kinase in invasin-promoted uptake.
Resumo:
Pathogenic yersiniae secrete a set of antihost proteins, called Yops, by a type III secretion mechanism. Upon infection of cultured epithelial cells, extracellular Yersinia pseudotuberculosis and Yersinia enterocolitica translocate cytotoxin YopE across the host cell plasma membrane. Several lines of evidence suggest that tyrosine phosphatase YopH follows the same pathway. We analyzed internalization of YopE and YopH into murine PU5-1.8 macrophages by using recombinant Y. enterocolitica producing truncated YopE and YopH proteins fused to a calmodulin-dependent adenylate cyclase. The YopE-cyclase and YopH-cyclase hybrids were readily secreted by Y. enterocolitica. The N-terminal domain required for secretion was not longer than 15 residues of YopE and 17 residues of YopH. Internalization into eukaryotic cells, revealed by cAMP production, only required the N-terminal 50 amino acid residues of YopE and the N-terminal 71 amino acid residues of YopH. YopE and YopH are thus modular proteins composed of a secretion domain, a translocation domain, and an effector domain. Translocation of YopE and YopH across host cell's membranes was also dependent on the secretion of YopB and YopD by the same bacterium. The cyclase fusion approach could be readily extended to study the fate of other proteins secreted by invasive bacterial pathogens.
Resumo:
Inaug.-diss. - Hannover, 1913.
Resumo:
The locus of enterocyte effacement (LEE) is a large multigene chromosomal segment encoding gene products responsible for the generation of attaching and effacing lesions in many diarrheagenic Escherichia coli strains. A recently sequenced LEE harboring a pathogenicity island (PAI) from a Shiga toxin E. coli serotype 026 strain revealed a LEE PAI (designated LEE 026) almost identical to that obtained from a rabbit-specific enteropathogenic 015:H- strain. LEE 026 comprises 59,540 bp and is inserted at 94 min within the mature pheU tRNA locus. The LEE 026 PAI is flanked by two direct repeats of 137 and 136 bp (DR1 and DR2), as well as a gene encoding an integrase belonging to the P4 integrase family. We examined LEE 026 for horizontal gene transfer. By generating mini-LEE plasmids harboring only DR1 or DR2 with or without the integrase-like gene, we devised a simple assay to examine recombination processes between these sequences. Recombination was shown to be integrase dependent in a Delta recA E. coli K-12 strain background. Recombinant plasmids harboring a single direct repeat cloned either with or without the LEE 026 integrase gene were found to insert within the chromosomal pheU locus of E. coli K-12 strains with equal efficiency, suggesting that an endogenous P4-like integrase can substitute for this activity. An integrase with strong homology to the LEE 026 integrase was detected on the K-12 chromosome associated with the leuX tRNA locus at 97 min. Strains deleted for this integrase demonstrated a reduction in the insertion frequency of plasmids harboring only the DR into the pheU locus. These results provide strong evidence that LEE-harboring elements are indeed mobile and suggest that closely related integrases present on the chromosome of E. coli strains contribute to the dynamics of PAI mobility.