222 resultados para Pseudoperonospora cubensis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planktonic foraminifers were studied from 213 samples collected during Leg 112 at 10 sites located on the continental shelf and slope off Peru. Because planktonic foraminifers occur discontinuously downcore, detailed biostratigraphic zonation was not defined. However, it was possible to distinguish early and middle Eocene, early and late Miocene, Pliocene, and Pleistocene sediments on the basis of the planktonic foraminifers. The oldest sediments of Zone P6 of early Eocene age were obtained from the basal part of Hole 688E, which was penetrated to 779.0 m below seafloor (bsf). A biosiliceous facies of the area predominates above the N6-N7 zonal interval of early Miocene age. All sites are within the present coastal upwelling area off Peru, and many of the late Pliocene and Pleistocene assemblages are similar to those that are characteristic of modern upwelling areas. The core samples differ, however, by having a predominance of cold-water elements, such as Neogloboquadrina incompta and N. pachyderma. Warm-water species are prevalent at some horizons in the cores, suggesting shifts of the coastal upwelling centers or warmer climatic events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen and carbon isotope ratios in Eocene and Oligocene planktonic and benthic foraminifera have been investigated from Atlantic, Indian, and Pacific Ocean locations. The major changes in Eocene-Oligocene benthic foraminiferal oxygen isotopes were enrichment of up to 1 per mil in 18O associated with the middle/late Eocene boundary and the Eocene/Oligocene boundary at locations which range from 1- to 4-km paleodepth. Although the synchronous Eocene-Oligocene 18O enrichment began in the latest Eocene, most of the change occurred in the earliest Oligocene. The earliest Oligocene enrichment in 18O is always larger in benthic foraminifera than in surface-dwelling planktonic foraminifera, a condition that indicates a combination of deep-water cooling and increased ice volume. Planktonic foraminiferal d18O does not increase across the middle/late Eocene boundary at our one site with the most complete record (Deep Sea Drilling Project Site 363, Walvis Ridge). This pattern suggests that benthic foraminiferal d18O increased 40 m.y. ago because of increased density of deep waters, probably as a result of cooling, although glaciation cannot be ruled out without more data. Stable isotope data are averaged for late Eocene and earliest Oligocene time intervals to evaluate paleoceanographic change. Average d18O of benthic foraminifera increased by 0.64 per mil from the late Eocene to the early Oligocene d18O maximum, whereas the average increase for planktonic foraminifera was 0.52 per mil. This similarity suggests that the Eocene/Oligocene boundary d18O increase was caused primarily by increased continental glaciation, coupled with deep sea cooling by as much as 2°C at some sites. Average d18O of surface-dwelling planktonic foraminifera from 14 upper Eocene and 17 lower Oligocene locations, when plotted versus paleo-latitude, reveals no change in the latitudinal d18O gradient. The Oligocene data are offset by ~0.45 per mil, also believed to reflect increased continental glaciation. At present, there are too few deep sea sequences from high latitude locations to resolve an increase in the oceanic temperature gradient from Eocene to Oligocene time using oxygen isotopes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A virtually complete composite history of Cenozoic pelagic sedimentation was recovered from ODP Sites 738 (62°43' S) and 744 (61°35' S), drilled during Leg 119 on the Kerguelen Plateau. An excellent magnetobiochronologic record was obtained from upper Eocene through Holocene sediments at Site 744, and an expanded lower Paleocene through lower Oligocene sequence was cored at Hole 738. Analysis of the stratigraphic distribution of over 125 planktonic foraminifer taxa from these sites reveals changes in species composition that were strongly influenced by the climatic evolution of Antarctic water masses. Early Paleocene planktonic foraminifer assemblages are nearly identical in species composition to coeval assemblages from low and middle latitude sites, showing the same patterns of post-extinction recovery and taxonomic radiation. Biogeographic isolation, revealed by the absence of tropical keeled species, became apparent by late early Paleocene time. Diversity increased near the Paleocene/Eocene boundary when keeled morozovellids immigrated to the Kerguelen Plateau. Greatest diversity (23 species) was achieved by early Eocene time, corresponding to a Cenozoic warming maximum that has been recognized in lower Eocene deep sea and terrestrial sediments worldwide. A gradual decline in diversity from the late early through middle Eocene, primarily due to the disappearance of acarininids, parallels the record of cooling paleotemperatures in Southern Ocean surface waters. Chiloguembelina-dominated assemblages appeared in the late middle Eocene and persisted through the early Oligocene as Antarctic surface waters became thermally isolated. Late Eocene and early Oligocene assemblages exhibit considerably lower diversity than the older Eocene faunas, and were dominated by chiloguembelinids, subbotinids, and catapsydracids during a time of pronounced climatic cooling and development of continental glaciation on East Antarctica. The small foraminifer Globigerinit? juvenilis replaced chiloguembelinids as the dominant taxon during the late Oligocene. Diversity increased slightly toward the end of the late Oligocene with new appearances of several tenuitellid, globoturborotalitid, and globigerinid species. The trend toward diminishing planktonic foraminifer diversity was renewed during the late early Miocene as siliceous productivity increased in the Antarctic surface waters, culminating with the reduction to nearly monospecific assemblages of Neogloboqu?drin? p?chyderm? that occur in Pliocene-Holocene biosiliceous sediments. An Antarctic Paleogene zonal scheme previously devised for ODP Sites 689 and 690 in the Weddell Sea is used to biostratigraphically subdivide the Kerguelen Plateau sequence. The definition of one Antarctic Paleogene biozone is modified in the present study to facilitate correlation within the southern high latitudes. The ages of 13 late Eoceneearly Miocene datum events are calibrated based on a magnetobiochronologic age model developed for Site 744.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planktonic foraminifers from Ocean Drilling Program Leg 182, Holes 1126B and 1126C, 1128B and 1128C, 1130A and 1130B, 1132B, and 1134A and 1134B confirm the neritic record that during the early Miocene the Great Australian Bight region was in a cool-temperate regime with abundant Globoturborotalita woodi. Warm marine environments started to develop in the later part of the early Miocene, and the region became warm temperate to subtropical in the early middle Miocene with abundant Globigerinoides, Orbulina, and Globorotalia, corresponding to global warming at the Miocene climatic optimum. Fluctuations between cool- and warm-temperate conditions prevailed during the late Miocene, as indicated by abundant Globoconella conoidea and Menardella spp. A major change in planktonic foraminiferal assemblages close to the Miocene/Pliocene boundary not only drove many Miocene species into extinction but also brought about such new species as Globorotalia crassaformis and Globoconella puncticulata. Warm-temperate environments continued into the early and mid-Pliocene before being replaced by cooler conditions, supporting numerous Globoconella inflata and Globigerina quinqueloba. Based on data from this study and published results from the Australia-New Zealand region, we established a local planktonic foraminifer zonation scheme for separating the southern Australian Neogene (SAN) into Zones SAN1 to SAN19 characterizing the Miocene and Zones SAN20 to SAN25 characterizing the Pliocene. The Neogene sections from the Great Australian Bight are bounded by hiatuses of ~0.5 to >3 m.y. in duration, although poor core recovery in some holes obscured a proper biostratigraphic resolution. A total of 15 hiatuses, numbered 1 to 15, were identified as synchronous events from the base of the Miocene to the lower part of the Pleistocene. We believe that these are local manifestations of major third-order boundaries at about (1) 23.8, (2) 22.3, (3) 20.5, (4) 18.7, (5) 16.4, (6) 14.8, (7) 13.5, (8) 11.5, (9) 9.3, (10) 7.0, (11) 6.0, (12) 4.5, (13) 3.5, (14) 2.5, and (15) 1.5 Ma, respectively. This hiatus-bounded Neogene succession samples regional transgressions and stages of southern Australia and reveals its stepwise evolutionary history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eocene through Pliocene benthic foraminifers were examined from seven sites located at middle and lower bathyal depths on the Lord Howe Rise in the Tasman Sea, from another site at lower bathyal depths in the Coral Sea, and from a site in the intermediate-depth, hemipelagic province of the Chatham Rise, east of southern New Zealand. Age-related, depth-related, and bioprovincial faunal variations are documented in this chapter. One new species, Rectuvigerina tasmana, is named. The paleoecologic indications of several key groups, including the miliolids, uvigerinids, nuttallitids, and cibicidids, are combined with sedimentologic and stable isotopic tracers to interpret paleoceanographic changes in the Tasman Sea. Because the total stratigraphic ranges of many bathyal benthic foraminifers are not yet known, most endpoints in the Tasman Sea are considered ecologically controlled events. The disappearances of Uvigerina rippensis and Cibicidoidesparki and the first appearances of U. pigmaea, Sphaeroidina bulloides, and Rotaliatina sulcigera at the Eocene/Oligocene boundary can be considered evolutionary events, as also can the first appearance of Cibicides wuellerstorfi in Zone NN5. Species which are restricted to the lower bathyal zone except during discrete pulses, most of which are related to the development of glacial conditions, include Melonis pompilioides, M. sphaeroides, Pullenia quinqueloba, Nuttallides umbonifera, and U. hispido-costata. Middle bathyal indigenes include U. spinulosa, U. gemmaeformis, Ehrenbergina marwicki, R. sulcigera, and all rectuvigerinids except Rectuvigerina spinea. Although the miliolids first occurred at lower bathyal depths, they were more common in the middle bathyal zone. Although the Neogene hispido-costate uvigerinids first developed at lower bathyal depths and at higher middle latitude sites, in the later Neogene this group migrated to shallower depths and became predominant also in the middle bathyal zone. Despite the relatively similar sedimentologic settings at the six middle bathyal Tasman sites, there was extensive intrageneric and intraspecific geographic variation. Mililiolids, strongly ornamented brizalinids, bolivinitids, Bulimina aculeata, Osangularia culter, and strongly porous morphotypes were more common at higher latitudes. Osangularia bengalensis, striate brizalinids such as Brizalina subaenariensis, Gaudryina solida, osangularids in general, and finely porous morphotypes were more common in the subtropics. There was strong covariance between faunas at lower middle latitude, lower bathyal Site 591, and higher middle latitude, middle bathyal Site 593. The following oceanographic history of the Tasman Sea is proposed; using the stable isotopic record as evidence for glacials and examining the ecologic correlations between (1) miliolids and carbonate saturation, (2) nuttallitids and undersaturated, cooled, or "new" water masses, (3) uvigerinids with high organic carbon in the sediment and high rates of sediment accumulation, and (4) cibicidids and terrestrial organic carbon. The glacial located near the Eocene/Oligocene boundary is characterized by the penetration of cooler, more corrosive waters at intermediate depths in high southern latitudes. This may have caused overturn, upwelling pulses, in other Tasman areas. The development of Neogenelike conditions began in the late Oligocene (Zone NP24/NP25) with the evolution of several common Neogene species. A large number of Paleogene benthics disappeared gradually through the course of the early Miocene, which was not well preserved at any Tasman site. Corrosive conditions shallowed into the middle bathyal zone in several pulses during the early Miocene. The development of glacial conditions in the middle Miocene was accompanied by major changes throughout the Tasman Sea. Sediment accumulation rates increased and high-productivity faunas and corrosive conditions developed at all but the lowest-latitude Site 588. This increase in productivity and accumulation rate is attributed to the eutrophication of Antarctic water masses feeding Tasman current systems, as well as to invigorated circulation in general. It overlaps with the beginning of the Pacific High-productivity Episode (10-5 Ma). During the latest Miocene glacial episode, corrosive conditions developed at lower bathyal depths, while cooler water and lower nutrient levels shallowed to middle bathyal depths. Lower input of terrestrial organic carbon may be related to the lower nutrient levels of this time and to the termination of the Pacific High-productivity Episode. The moderate glacial episode during the mid-Pliocene (Zone NN15/NN16, ~3.2 Ma) corresponds to a decline in sediment accumulation rates and a reorganization of faunas unlike that of all other times. New genera proliferate and indices for cool, noncorrosive conditions and high organic carbon expand throughout the middle bathyal zone coeval with the sedimentation rate decreases. By the latest Pliocene (about 2.5 Ma), however, during another glacial episode, faunal patterns typical of this and later glacials develop throughout the Tasman Sea. Benthic foraminiferal patterns suggest increased input of terrestrial organic matter to Tasman Sea sediments during this episode and during later glacials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An essentially complete Paleogene record was recovered on the Central and Southern Kerguelen plateaus (55°-59°S) in a calcareous biofacies. Recovery deteriorated in the middle Eocene and down to the upper Paleocene because of the presence of interbedded cherts and chalks. The stratigraphic distribution of about 70 taxa of planktonic foraminifers recovered at Sites 747-749 is reported in this paper. Faunas exhibited fairly high diversity (approximately 20-25 species) in the early Eocene, followed by a gradual reduction in diversity in the middle Eocene. A brief incursion of tropical keeled morozovellids occurred near the Paleocene/Eocene boundary, similar to that recorded on the Maud Rise (ODP Sites 689 and 690). The high-latitude Paleogene zonal scheme developed for ODP Leg 113 sites has been adopted (with minor modifications) for the lower Eocene-Oligocene part of the Kerguelen Plateau record. A representative Oligocene (polarity chronozones 7-13) and late Eocene-late middle Eocene (questionably polarity chronozones 16-18) magnetostratigraphic record has allowed the calibration of several biostratigraphic datum levels to the standard Global Polarity Time Scale (GPTS) and established their essential synchrony between low and high latitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benthic foraminifers were studied quantitatively in 120 lower Miocene through upper Pleistocene samples from Ocean Drilling Program Site 747 (Central Kerguelen Plateau) and Sites 748 and 751 (Southern Kerguelen Plateau). These sites are situated on an 450-km-long, north-south transect between 54°49'S and 58°26'S at present water depths between 1696 and 1288 m. Principal component analysis on the census data of the most abundant 92 taxa helped to identify 8 benthic foraminifer assemblages. These benthic foraminifer assemblages were compared with Holocene faunas from southern high latitudes to reconstruct paleoenvironmental conditions. Middle lower Miocene sediments are characterized by a Uvigerina hispidocostata assemblage, indicating high paleoproductivity and/or not well-ventilated bottom water. From late early to late middle Miocene time, the Southern Kerguelen Plateau was bathed by a young, well-oxygenated, and carbonate-aggressive water mass, as indicated by a Nuttallides umbonifer-dominated benthic foraminifer assemblage. During late middle Miocene time, an Astrononion pusillum assemblage took over for only about 1 m.y., probably indicating the first injection of an aged water mass, similar to the North Atlantic Deep Water (NADW), into a developing circumpolar current system. Around the middle to late Miocene boundary, the fauna again became dominated by N. umbonifer. After the last appearance of N. umbonifer, reestablishment of the A. pusillum assemblage from the early late through at least the late late Miocene, indicated the established influence of a NADW-like water mass. The latest Miocene through middle late Pliocene benthic foraminifer assemblage was characterized by Epistominella exigua and strong carbonate dissolution, indicating very high biosiliceous production, and this in turn may indicate the formation and paleoposition of an Antarctic Polar Frontal Zone. From the late late Pliocene, a Trifarina angulosa assemblage (indicative today of sandy substrate and vigorous bottom currents) strongly dominated the fauna up to the late Pleistocene, when Bulimina aculeata (indicative today of calm sedimentation with high organic matter fluxes) became an important and partly dominating constituent of the fauna. This is interpreted as the faunal response to the decreased winnowing force (bottom current velocities) of the Antarctic Circumpolar Current during periods of global climatic amelioration and raised sea level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable carbon and oxygen isotope analyses were conducted on well-preserved planktonic and benthic foraminifers from a continuous middle Eocene to Oligocene sequence at Ocean Drilling Program (ODP) Site 748 on the Kerguelen Plateau. Benthic foraminifer d18O values show a 1.0 per mil increase through the middle and upper Eocene, followed by a rapid 1.2 per mil increase in the lowermost Oligocene (35.5 Ma). Surface-dwelling planktonic foraminifer d18O values increase in the lowermost Oligocene, but only by 0.6 per mil whereas intermediate-depth planktonic foraminifers show an increase of about l.0 per mil. Benthic foraminifer d13C values increase by 0.9 per mil in the lowermost Oligocene at precisely the same time as the large d18O increase, whereas planktonic foraminifer d13C values show little or no change. Site 748 oxygen isotope and paleontological records suggest that southern Indian Ocean surface and intermediate waters underwent significant cooling from the early to late Eocene. The rapid 1.2 per mil oxygen isotope increase recorded by benthic foraminifers just above the Eocene/Oligocene boundary represents the ubiquitous early Oligocene d18O event. The shift here is unique, however, as it coincided with the sudden appearance of ice-rafted debris (IRD), providing the first direct link between Antarctic glacial activity and the earliest Oligocene d18O increase. The d18O increase caused by the ice-volume change in the early Oligocene is constrained by (1) related changes in the planktonic to benthic foraminifer d18O gradient at Site 748 and (2) comparisons of late Eocene and early Oligocene planktonic foraminifer d18Ovalues from various latitudes. Both of these records indicate that 0.3 per mil to 0.4 per mil of the early Oligocene d18O increase was ice-volume related.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leg 101 of the Ocean Drilling Program recovered a large volume of Neogene sediments from sites in the Straits of Florida, Little Bahama Bank, and Exuma Sound. In varying amounts, shallow-water, platform-derived carbonate debris is nearly ubiquitous. Reworked planktonic foraminifers are common, especially in the Pliocene-Pleistocene. At Site 626 in the Straits of Florida, a sequence of Holocene to upper Oligocene sediments was recovered. The greatest Neogene hiatus at this site spans the latest Miocene through Pliocene. Below this, several minor hiatuses are present in a generally conformable sequence. From the Little Bahama Bank transect (Sites 627, 628, and 630), a nearly complete composite Neogene section was sampled. At Site 627, a major unconformity separates lowermost Miocene sediments from middle to upper Eocene sediments. A second major unconformity occurs at Site 628. Here, middle Miocene sediments lie above uppermost Oligocene deposits. Sites 632, 633, and 631 in Exuma Sound all bottomed in a thick, lower Pliocene section. The mid-Pliocene is very thin at Sites 633 and 631, while it is better represented at Site 632. Major unconformities at Sites 627 and 628 appear to correlate with periods of elevated sea level, which suggests that carbonate platform shedding may be greatest during this part of the sea-level cycles. One of the salient features of the Bahamas is the lack of any systematic temporal distribution of hiatuses. Only a brief hiatus in the late Pliocene may be regional. It appears that local platform-shedding events were of equal or greater importance in developing the stratigraphy of the Bahamas than regional or eustatic events.