935 resultados para Pseudo-Kahler metric
Resumo:
The reaction of 2-formylbenzenesulfonyl chloride 1 and its pseudo isomer 2 with primary amines give either the corresponding sulfonamido Schiff bases or the corresponding 2-formylbenzenesulfonamide depending on the concentration of the amine used. The derivatives exist as an equilibrium mixture of the corresponding sulfonamide and 2-alkyl-3-hydroxy(or 3-aminoalkyl)-benzisothiazole-1,1-dioxide. Spectroscopic studies suggest that 2-formylbenzenesulfonamides exist as benzisothiazole-1,1-dioxides in the solid state, as a mixture of 2-formylbenzenesulfonamide and the corresponding benzisothiazole-1,1-dioxide in solution and as 2-formyl-benzenesulfonamides in the gas phase.
Resumo:
A framework based on the notion of "conflict-tolerance" was proposed in as a compositional methodology for developing and reasoning about systems that comprise multiple independent controllers. A central notion in this framework is that of a "conflict-tolerant" specification for a controller. In this work we propose a way of defining conflict-tolerant real-time specifications in Metric Interval Temporal Logic (MITL). We call our logic CT-MITL for Conflict-Tolerant MITL. We then give a clock optimal "delay-then-extend" construction for building a timed transition system for monitoring past-MITL formulas. We show how this monitoring transition system can be used to solve the associated verification and synthesis problems for CT-MITL.
Resumo:
We propose a new method for evaluating the adsorbed phase volume during physisorption of several gases on activated carbon specimens. We treat the adsorbed phase as another equilibrium phase which satisfies the Gibbs equation and hence assume that the law of rectilinear diameters is applicable. Since invariably the bulk gas phase densities are known along measured isotherms, the constants of the adsorbed phase volume can be regressed from the experimental data. We take the Dubinin-Astakhov isotherm as the model for verifying our hypothesis since it is one of the few equations that accounts for adsorbed phase volume changes. In addition, the pseudo-saturation pressure in the supercritical region is calculated by letting the index of the temperature term in Dubinin's equation to be temperature dependent. Based on over 50 combinations of activated carbons and adsorbates (nitrogen, oxygen, argon, carbon dioxide, hydrocarbons and halocarbon refrigerants) it is observed that the proposed changes fit experimental data quite well.
Resumo:
Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on the norm of mean curvature and area. We show that on passing to a subsequence, we can choose parametrisations of the surfaces by inclusion maps from a fixed surface of the same genus so that the distance functions corresponding to the pullback metrics converge to a pseudo-metric and the inclusion maps converge to a Lipschitz map. We show further that the limiting pseudo-metric has fractal dimension two. As a corollary, we obtain a purely geometric result. Namely, we show that bounds on the mean curvature, area and genus of a surface F subset of M, together with bounds on the geometry of M, give an upper bound on the diameter of F. Our proof is modelled on Gromov's compactness theorem for J-holomorphic curves.
Resumo:
Seismic design of reinforced soil structures involves many uncertainties that arise from the backfill soil properties and tensile strength of the reinforcement which is not addressed in current design guidelines. This paper highlights the significance of variability in the internal stability assessment of reinforced soil structures. Reliability analysis is applied to estimate probability of failure and pseudo‐static approach has been used for the calculation of the tensile strength and length of the reinforcement needed to maintain the internal stability against tension and pullout failures. Logarithmic spiral failure surface has been considered in conjunction with the limit equilibrium method. Two modes of failure namely, tension failure and pullout failure have been considered. The influence of variations of the backfill soil friction angle, the tensile strength of reinforcement, horizontal seismic acceleration on the reliability index against tension failure and pullout failure of reinforced earth structure have been discussed.
Resumo:
Statistical information about the wireless channel can be used at the transmitter side to enhance the performance of MIMO systems. This paper addresses how the concept of channel precoding can be used to enhance the performance of STBCs from Generalized Pseudo Orthogonal Designs which were first introduced by Zhu and Jafarkhani. Such designs include some important classes of STBCs that are directly derivable from Quasi-Orthogonal Designs and Co-ordinate Interleaved Orthogonal Designs.
Resumo:
We recast the reconstruction problem of diffuse optical tomography (DOT) in a pseudo-dynamical framework and develop a method to recover the optical parameters using particle filters, i.e., stochastic filters based on Monte Carlo simulations. In particular, we have implemented two such filters, viz., the bootstrap (BS) filter and the Gaussian-sum (GS) filter and employed them to recover optical absorption coefficient distribution from both numerically simulated and experimentally generated photon fluence data. Using either indicator functions or compactly supported continuous kernels to represent the unknown property distribution within the inhomogeneous inclusions, we have drastically reduced the number of parameters to be recovered and thus brought the overall computation time to within reasonable limits. Even though the GS filter outperformed the BS filter in terms of accuracy of reconstruction, both gave fairly accurate recovery of the height, radius, and location of the inclusions. Since the present filtering algorithms do not use derivatives, we could demonstrate accurate contrast recovery even in the middle of the object where the usual deterministic algorithms perform poorly owing to the poor sensitivity of measurement of the parameters. Consistent with the fact that the DOT recovery, being ill posed, admits multiple solutions, both the filters gave solutions that were verified to be admissible by the closeness of the data computed through them to the data used in the filtering step (either numerically simulated or experimentally generated). (C) 2011 Optical Society of America
Resumo:
The study focuses on probabilistic assessment of the internal seismic stability of reinforced soil structures (RSS) subjected to earthquake loading in the framework of the pseudo-dynamic method. In the literature, the pseudo-static approach has been used to compute reliability indices against the tension and pullout failure modes, and the real dynamic nature of earthquake accelerations cannot be considered. The work presented in this paper makes use of the horizontal and vertical sinusoidal accelerations, amplification of vibrations, shear wave and primary wave velocities and time period. This approach is applied to quantify the influence of the backfill properties, geosynthetic reinforcement and characteristics of earthquake ground motions on reliability indices in relation to the tension and pullout failure modes. Seismic reliability indices at different levels of geosynthetic layers are determined for different magnitudes of seismic acceleration, soil amplification, shear wave and primary wave velocities. The results are compared with the pseudo-static method, and the significance of the present methodology for designing reinforced soil structures is discussed.
Resumo:
We report here the electrical and magnetic properties of Al70Pd30−xMnx quasicrystals (x=9 and 11), from resistivity and point contact spectroscopy measurements. Electrical resistivity shows a resistivity maximum for both of these compositions. The positive TCR at lower temperature is attributed to spin–orbit scattering. For x=11, we observe an upturn in the resistivity below 20 K, which follows a lnT dependence indicating Kondo-like behaviour. In the point contact spectroscopy studies we observe two regimes showing a V2 dependence at low bias voltages (for V<10 meV) crossing over to the V0.5 dependence at higher voltages. This is attributed to the signature of a pseudo-gap in the density of states at zero bias. We suggest that this V2 dependence can also arise due to magnetic scattering effects, which are signatures of the Kondo-like behaviour.
Resumo:
Purpose: The authors aim at developing a pseudo-time, sub-optimal stochastic filtering approach based on a derivative free variant of the ensemble Kalman filter (EnKF) for solving the inverse problem of diffuse optical tomography (DOT) while making use of a shape based reconstruction strategy that enables representing a cross section of an inhomogeneous tumor boundary by a general closed curve. Methods: The optical parameter fields to be recovered are approximated via an expansion based on the circular harmonics (CH) (Fourier basis functions) and the EnKF is used to recover the coefficients in the expansion with both simulated and experimentally obtained photon fluence data on phantoms with inhomogeneous inclusions. The process and measurement equations in the pseudo-dynamic EnKF (PD-EnKF) presently yield a parsimonious representation of the filter variables, which consist of only the Fourier coefficients and the constant scalar parameter value within the inclusion. Using fictitious, low-intensity Wiener noise processes in suitably constructed ``measurement'' equations, the filter variables are treated as pseudo-stochastic processes so that their recovery within a stochastic filtering framework is made possible. Results: In our numerical simulations, we have considered both elliptical inclusions (two inhomogeneities) and those with more complex shapes (such as an annular ring and a dumbbell) in 2-D objects which are cross-sections of a cylinder with background absorption and (reduced) scattering coefficient chosen as mu(b)(a)=0.01mm(-1) and mu('b)(s)=1.0mm(-1), respectively. We also assume mu(a) = 0.02 mm(-1) within the inhomogeneity (for the single inhomogeneity case) and mu(a) = 0.02 and 0.03 mm(-1) (for the two inhomogeneities case). The reconstruction results by the PD-EnKF are shown to be consistently superior to those through a deterministic and explicitly regularized Gauss-Newton algorithm. We have also estimated the unknown mu(a) from experimentally gathered fluence data and verified the reconstruction by matching the experimental data with the computed one. Conclusions: The PD-EnKF, which exhibits little sensitivity against variations in the fictitiously introduced noise processes, is also proven to be accurate and robust in recovering a spatial map of the absorption coefficient from DOT data. With the help of shape based representation of the inhomogeneities and an appropriate scaling of the CH expansion coefficients representing the boundary, we have been able to recover inhomogeneities representative of the shape of malignancies in medical diagnostic imaging. (C) 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3679855]
Resumo:
The paper focuses on reliability based design of bridge abutments when subjected to earthquake loading. Planar failure surface has been used in conjunction with pseudo-dynamic approach to compute the seismic active earth pressures on the bridge abutment. The proposed pseudo dynamic method, considers the effects of strain localization in the backfill soil and associated post-peak reduction in the shear resistance from peak to residual values along a previously formed failure plane, phase difference in shear waves and soil amplification along with the horizontal seismic accelerations. Four modes of stability viz. sliding, overturning, eccentricity and bearing capacity of the foundation soil are considered for the reliability analysis. The influence of various design parameters on the seismic reliability indices against four modes of failure is presented, following the suggestions of Japan Road Association, Caltrans Bridge Design Specifications and U.S Department of the Army.
Resumo:
In this paper the seismic slope stability analyses are performed for a typical section of 44 m high water retention type tailings earthen dam located in the eastern part of India, using both the conventional pseudo-static and recent pseudo-dynamic methods. The tailings earthen dam is analyzed for different upstream conditions of reservoir like filled up with compacted and non-compacted dumped waste materials with different water levels of the pond tailings portion. Phreatic surface is generated using seepage analysis in geotechnical software SEEP/W and that same is used in the pseudo-static and pseudo-dynamic analyses to make the approach more realistic. The minimum values of factor of safety using pseudo-static and pseudo-dynamic method are obtained as 1.18 and 1.09 respectively for the chosen seismic zone in India. These values of factor of safety show clearly the demerits of conventional pseudo-static analysis compared to recent pseudo-dynamic analysis, where in addition to the seismic accelerations, duration, frequency of earthquake, body waves traveling during earthquake and amplification effects are considered.
Resumo:
Let where be a set of points in d-dimensional space with a given metric rho. For a point let r (p) be the distance of p with respect to rho from its nearest neighbor in Let B(p,r (p) ) be the open ball with respect to rho centered at p and having the radius r (p) . We define the sphere-of-influence graph (SIG) of as the intersection graph of the family of sets Given a graph G, a set of points in d-dimensional space with the metric rho is called a d-dimensional SIG-representation of G, if G is isomorphic to the SIG of It is known that the absence of isolated vertices is a necessary and sufficient condition for a graph to have a SIG-representation under the L (a)-metric in some space of finite dimension. The SIG-dimension under the L (a)-metric of a graph G without isolated vertices is defined to be the minimum positive integer d such that G has a d-dimensional SIG-representation under the L (a)-metric. It is denoted by SIG (a)(G). We study the SIG-dimension of trees under the L (a)-metric and almost completely answer an open problem posed by Michael and Quint (Discrete Appl Math 127:447-460, 2003). Let T be a tree with at least two vertices. For each let leaf-degree(v) denote the number of neighbors of v that are leaves. We define the maximum leaf-degree as leaf-degree(x). Let leaf-degree{(v) = alpha}. If |S| = 1, we define beta(T) = alpha(T) - 1. Otherwise define beta(T) = alpha(T). We show that for a tree where beta = beta (T), provided beta is not of the form 2 (k) - 1, for some positive integer k a parts per thousand yen 1. If beta = 2 (k) - 1, then We show that both values are possible.
Resumo:
We say a family of geometric objects C has (l;k)-property if every subfamily C0C of cardinality at most lisk- piercable. In this paper we investigate the existence of g(k;d)such that if any family of objects C in Rd has the (g(k;d);k)-property, then C is k-piercable. Danzer and Gr̈ unbaum showed that g(k;d)is infinite for fami-lies of boxes and translates of centrally symmetric convex hexagons. In this paper we show that any family of pseudo-lines(lines) with (k2+k+ 1;k)-property is k-piercable and extend this result to certain families of objects with discrete intersections. This is the first positive result for arbitrary k for a general family of objects. We also pose a relaxed ver-sion of the above question and show that any family of boxes in Rd with (k2d;k)-property is 2dk- piercable.