322 resultados para Pruning.
Resumo:
The problem of recognition on finite set of events is considered. The generalization ability of classifiers for this problem is studied within the Bayesian approach. The method for non-uniform prior distribution specification on recognition tasks is suggested. It takes into account the assumed degree of intersection between classes. The results of the analysis are applied for pruning of classification trees.
Resumo:
Historically, grapevine (Vitis vinifera L.) leaf characterisation has been a driving force in the identification of cultivars. In this study, ampelometric (foliometric) analysis was done on leaf samples collected from hand-pruned, mechanically pruned and minimally pruned ‘Sauvignon blanc’ and ‘Syrah’ vines to estimate the impact of within-vineyard variability and a change in bud load on the stability of leaf properties. The results showed that within-vineyard variability of ampelometric characteristics was high within a cultivar, irrespective of bud load. In terms of the O.I.V. coding system, zero to four class differences were observed between minimum and maximum values of each characteristic. The value of variability of each characteristic was different between the three levels of bud load and the two cultivars. With respect to bud load, the number of shoots per vine had a significant effect on the characteristics of the leaf laminae. Single leaf area and lengths of veins changed significantly for both cultivars, irrespective of treatment, while angle between veins proved to be a stable characteristic. A large number of biometric data can be recorded on a single leaf; the data measured on several leaves, however, are not necessarily unique for a specific cultivar. The leaf characteristics analysed in this study can be divided into two groups according to the response to a change in bud load, i.e. stable (angles between the veins, depths of sinuses) and variable (length of the veins, length of the petiole, single leaf area). The variable characteristics are not recommended to be used in cultivar identification, unless the pruning method/bud load is known.
Resumo:
A self-organising model of macadamia, expressed using L-Systems, was used to explore aspects of canopy management. A small set of parameters control the basic architecture of the model, with a high degree of self-organisation occurring to determine the fate and growth of buds. Light was sensed at the leaf level and used to represent vigour and accumulated basipetally. Buds also sensed light so as to provide demand in the subsequent redistribution of the vigour. Empirical relationships were derived from a set of 24 completely digitised trees after conversion to multiscale tree graphs (MTG) and analysis with the OpenAlea software library. The ability to write MTG files was embedded within the model so that various tree statistics could be exported for each run of the model. To explore the parameter space a series of runs was completed using a high-throughput computing platform. When combined with MTG generation and analysis with OpenAlea it provided a convenient way in which thousands of simulations could be explored. We allowed the model trees to develop using self-organisation and simulated cultural practices such as hedging, topping, removal of the leader and limb removal within a small representation of an orchard. The model provides insight into the impact of these practices on potential for growth and the light distribution within the canopy and to the orchard floor by coupling the model with a path-tracing program to simulate the light environment. The lessons learnt from this will be applied to other evergreen, tropical fruit and nut trees.
Resumo:
Mestrado em Engenharia Alimentar - Instituto Superior de Agronomia - UL
Resumo:
The degree to which pruning helps reestablish balance in agroforestry was assessed in a system established in São Carlos, São Paulo, Brazil, in 2008. Seven native tree species were planted at a density of 600 trees/ha in five strips of three rows each, and annual crops were cultivated in the 17-m crop strips between the tree strips. Competition was established after 35 months, decreasing the aboveground biomass production of corn planted close to the trees. An assessment of black oats in the dry season following tree pruning showed that the proximity of trees caused reductions in plant and panicle density, aboveground biomass production, number of grains per panicle and grain weight. Because pruning was not sufficient to maintain crop yields, tree thinning is recommended in order to minimize competition and restore conditions for adequate crop production.
Resumo:
Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the SELF-PRUNING (SP) gene family, which also includes the florigen gene SINGLE FLOWER TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix×ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution.
Resumo:
Understanding why we age is a long-lived open problem in evolutionary biology. Aging is prejudicial to the individual, and evolutionary forces should prevent it, but many species show signs of senescence as individuals age. Here, I will propose a model for aging based on assumptions that are compatible with evolutionary theory: i) competition is between individuals; ii) there is some degree of locality, so quite often competition will be between parents and their progeny; iii) optimal conditions are not stationary, and mutation helps each species to keep competitive. When conditions change, a senescent species can drive immortal competitors to extinction. This counter-intuitive result arises from the pruning caused by the death of elder individuals. When there is change and mutation, each generation is slightly better adapted to the new conditions, but some older individuals survive by chance. Senescence can eliminate those from the genetic pool. Even though individual selection forces can sometimes win over group selection ones, it is not exactly the individual that is selected but its lineage. While senescence damages the individuals and has an evolutionary cost, it has a benefit of its own. It allows each lineage to adapt faster to changing conditions. We age because the world changes.
Resumo:
Background: The tomato (Solanum lycopersicum L.) plant is both an economically important food crop and an ideal dicot model to investigate various physiological phenomena not possible in Arabidopsis thaliana. Due to the great diversity of tomato cultivars used by the research community, it is often difficult to reliably compare phenotypes. The lack of tomato developmental mutants in a single genetic background prevents the stacking of mutations to facilitate analysis of double and multiple mutants, often required for elucidating developmental pathways. Results: We took advantage of the small size and rapid life cycle of the tomato cultivar Micro-Tom (MT) to create near-isogenic lines (NILs) by introgressing a suite of hormonal and photomorphogenetic mutations (altered sensitivity or endogenous levels of auxin, ethylene, abscisic acid, gibberellin, brassinosteroid, and light response) into this genetic background. To demonstrate the usefulness of this collection, we compared developmental traits between the produced NILs. All expected mutant phenotypes were expressed in the NILs. We also created NILs harboring the wild type alleles for dwarf, self-pruning and uniform fruit, which are mutations characteristic of MT. This amplified both the applications of the mutant collection presented here and of MT as a genetic model system. Conclusions: The community resource presented here is a useful toolkit for plant research, particularly for future studies in plant development, which will require the simultaneous observation of the effect of various hormones, signaling pathways and crosstalk.
Resumo:
This paper addresses the single machine scheduling problem with a common due date aiming to minimize earliness and tardiness penalties. Due to its complexity, most of the previous studies in the literature deal with this problem using heuristics and metaheuristics approaches. With the intention of contributing to the study of this problem, a branch-and-bound algorithm is proposed. Lower bounds and pruning rules that exploit properties of the problem are introduced. The proposed approach is examined through a computational comparative study with 280 problems involving different due date scenarios. In addition, the values of optimal solutions for small problems from a known benchmark are provided.
Resumo:
Fruit-set in tomato (Solanum lycopersicum) depends on gibberellins and auxins (GAs). Here, we show, using the cv MicroTom, that application of N-1-naphthylphthalamic acid (NPA; an inhibitor of auxin transport) to unpollinated ovaries induced parthenocarpic fruit-set, associated with an increase of indole-3-acetic acid (IAA) content, and that this effect was negated by paclobutrazol (an inhibitor of GA biosynthesis). NPA-induced ovaries contained higher content of GA(1) (an active GA) and transcripts of GA biosynthetic genes (SlCPS, SlGA20ox1, and -2). Interestingly, application of NPA to pollinated ovaries prevented their growth, potentially due to supraoptimal IAA accumulation. Plant decapitation and inhibition of auxin transport by NPA from the apical shoot also induced parthenocarpic fruit growth of unpollinated ovaries. Application of IAA to the severed stump negated the plant decapitation effect, indicating that the apical shoot prevents unpollinated ovary growth through IAA transport. Parthenocarpic fruit growth induced by plant decapitation was associated with high levels of GA(1) and was counteracted by paclobutrazol treatment. Plant decapitation also produced changes in transcript levels of genes encoding enzymes of GA biosynthesis (SlCPS and SlGA20ox1) in the ovary, quite similar to those found in NPA-induced fruits. All these results suggest that auxin can have opposing effects on fruit-set, either inducing (when accumulated in the ovary) or repressing (when transported from the apical shoot) that process, and that GAs act as mediators in both cases. The effect of NPA application and decapitation on fruit-set induction was also observed in MicroTom lines bearing introgressed DWARF and SELF-PRUNING wild-type alleles.
Resumo:
Data were collected in early ripening peach [Prunus persica (L.) Batsch] varieties trained to a vase system to determine if a relationship exists between fruit weight and shoot diameter. The experiment was conducted with 3 varieties at Gainesville, FL with detailed pruning and with 3 other varieties at Atapulgus, GA with minimum pruning. All the varieties were similar in fruit development period (FDP) and fruit size. The largest shoot diameter was generally found in the upper canopy in all varieties. There was no correlation between shoot diameter and fruit weight for 'TropicBeauty', 'TropicSnow' and 'UF2000' at Gainesville under detailed pruning. There was a significant (p = 0.01) correlation for 'Flordacrest' in the lower (r = 0.53) canopy and for 'White Robin' in both the upper (r = 0.38) and lower (r = 0.40) canopy at Attapulgus, GA under minimal pruning. In these situations, large stems were associated with large fruit. 'Delta', grown at Attapulgus with minimal pruning, showed no correlation between shoot diameter and fruit weight, probably because it is male sterile and produced large fruit due to a reduced crop load.
Resumo:
This work describes a methodology to extract symbolic rules from trained neural networks. In our approach, patterns on the network are codified using formulas on a Lukasiewicz logic. For this we take advantage of the fact that every connective in this multi-valued logic can be evaluated by a neuron in an artificial network having, by activation function the identity truncated to zero and one. This fact simplifies symbolic rule extraction and allows the easy injection of formulas into a network architecture. We trained this type of neural network using a back-propagation algorithm based on Levenderg-Marquardt algorithm, where in each learning iteration, we restricted the knowledge dissemination in the network structure. This makes the descriptive power of produced neural networks similar to the descriptive power of Lukasiewicz logic language, minimizing the information loss on the translation between connectionist and symbolic structures. To avoid redundance on the generated network, the method simplifies them in a pruning phase, using the "Optimal Brain Surgeon" algorithm. We tested this method on the task of finding the formula used on the generation of a given truth table. For real data tests, we selected the Mushrooms data set, available on the UCI Machine Learning Repository.