997 resultados para Protein fibrillar aggregates


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A protocol to produce large amounts of bioactive homogeneous human interferon β1 expressed in Escherichia coli was developed. Human interferon β1 ser17 gene was constructed, cloned and subcloned, and the recombinant protein expressed in E. coli cells. Solubilization of recombinant human interferon β1 ser17 (rhIFN-β1 ser17) was accomplished by employing a brief shift to high alkaline pH in the presence of non-ionic detergent. The recombinant protein was purifi ed by three chromatographic steps. N-terminal amino acid sequencing and mass spectrometry analysis provided experimental evidence for the identity of the recombinant protein. Reverse phase liquid chromatography demonstrated that the content of deamidates and sulphoxides was similar to a commercial standard. Size exclusion chromatography demonstrated the absence of high molecular mass aggregates and dimers. The protocol represents an effi cient and high-yield method to obtain bioactive homogeneous monomeric rhIFN-β1 ser17 protein. It may thus represent an important step towards scaling up for rhIFN-β1 ser17 large-scale production. © 2010 Villela AD, et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SET protein (I2PP2A) is an inhibitor of PP2A, which regulates the phosphorylated Akt (protein kinase B) levels. We assessed the effects of SET overexpression in HEK293T cells, both in the presence and the absence of mild oxidative stress induced by 50 mu M tert-butyl hydroperoxide. Immunoblotting assays demonstrated that SET accumulated in HEK293T cells and increased the levels of phosphorylated Akt and PTEN; in addition, SET decreased glutathione antioxidant defense of cell and increased expression of genes encoding antioxidant defense proteins. Immunofluorescence analysis demonstrated that accumulated SET was equally distributed in cytoplasm and nucleus; however, in cells that had been exposed to oxidative stress, SET was found in large aggregates in the cytoplasm. SET accumulation in HEK293T cells correlated with inhibition of basal apoptosis as evidenced by a decrease in annexin V staining and activity of caspases; under mild oxidative stress, SET accumulation correlated with caspase-independent cell death, as evidenced by increased PI and annexin V/PI double staining. The results suggest that accumulated SET could act via Akt/PTEN either as cell survival signal or as oxidative stress sensor for cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many age-related neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and polyglutamine disorders, including Huntington’s disease, are associated with the aberrant formation of protein aggregates. These protein aggregates and/or their precursors are believed to be causally linked to the pathogenesis of such protein conformation disorders, also referred to as proteinopathies. The accumulation of protein aggregates, frequently under conditions of an age-related increase in oxidative stress, implies the failure of protein quality control and the resulting proteome instability as an upstream event of proteinopathies. As aging is a main risk factor of many proteinopathies, potential alterations of protein quality control pathways that accompany the biological aging process could be a crucial factor for the onset of these disorders.rnrnThe focus of this dissertation lies on age-related alterations of protein quality control mechanisms that are regulated by the co-chaperones of the BAG (Bcl-2-associated athanogene) family. BAG proteins are thought to promote nucleotide exchange on Hsc/Hsp70 and to couple the release of chaperone-bound substrates to distinct down-stream cellular processes. The present study demonstrates that BAG1 and BAG3 are reciprocally regulated during aging leading to an increased BAG3 to BAG1 ratio in cellular models of replicative senescence as well as in neurons of the aging rodent brain. Furthermore, BAG1 and BAG3 were identified as key regulators of protein degradation pathways. BAG1 was found to be essential for effective degradation of polyubiquitinated proteins by the ubiquitin/proteasome system, possibly by promoting Hsc/Hsp70 substrate transfer to the 26S proteasome. In contrast, BAG3 was identified to stimulate the turnover of polyubiquitinated proteins by macroautophagy, a catabolic process mediated by lysosomal hydrolases. BAG3-regulated protein degradation was found to depend on the function of the ubiquitin-receptor protein SQSTM1 which is known to sequester polyubiquitinated proteins for macroautophagic degradation. It could be further demonstrated that SQSTM1 expression is tightly coupled to BAG3 expression and that BAG3 can physically interact with SQSTM1. Moreover, immunofluorescence-based microscopic analyses revealed that BAG3 co-localizes with SQSTM1 in protein sequestration structures suggesting a direct role of BAG3 in substrate delivery to SQSTM1 for macroautophagic degradation. Consistent with these findings, the age-related switch from BAG1 to BAG3 was found to determine that aged cells use the macroautophagic system more intensely for the turnover of polyubiquitinated proteins, in particular of insoluble, aggregated quality control substrates. Finally, in vivo expression analysis of macroautophagy markers in young and old mice as well as analysis of the lysosomal enzymatic activity strongly indicated that the macroautophagy pathway is also recruited in the nervous system during the organismal aging process.rnrnTogether these findings suggest that protein turnover by macroautophagy is gaining importance during the aging process as insoluble quality control substrates are increasingly produced that cannot be degraded by the proteasomal system. For this reason, a switch from the proteasome regulator BAG1 to the macroautophagy stimulator BAG3 occurs during cell aging. Hence, it can be concluded that the BAG3-mediated recruitment of the macroauto-phagy pathway is an important adaptation of the protein quality control system to maintain protein homeostasis in the presence of an enhanced pro-oxidant and aggregation-prone milieu characteristic of aging. Future studies will explore whether an impairment of this adaptation process may contribute to age-related proteinopathies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in the fast growing area of therapeutic/diagnostic proteins and antibodies - novel and highly specific drugs - as well as the progress in the field of functional proteomics regarding the correlation between the aggregation of damaged proteins and (immuno) senescence or aging-related pathologies, underline the need for adequate analytical methods for the detection, separation, characterization and quantification of protein aggregates, regardless of the their origin or formation mechanism. Hollow fiber flow field-flow fractionation (HF5), the miniaturized version of FlowFFF and integral part of the Eclipse DUALTEC FFF separation system, was the focus of this research; this flow-based separation technique proved to be uniquely suited for the hydrodynamic size-based separation of proteins and protein aggregates in a very broad size and molecular weight (MW) range, often present at trace levels. HF5 has shown to be (a) highly selective in terms of protein diffusion coefficients, (b) versatile in terms of bio-compatible carrier solution choice, (c) able to preserve the biophysical properties/molecular conformation of the proteins/protein aggregates and (d) able to discriminate between different types of protein aggregates. Thanks to the miniaturization advantages and the online coupling with highly sensitive detection techniques (UV/Vis, intrinsic fluorescence and multi-angle light scattering), HF5 had very low detection/quantification limits for protein aggregates. Compared to size-exclusion chromatography (SEC), HF5 demonstrated superior selectivity and potential as orthogonal analytical method in the extended characterization assays, often required by therapeutic protein formulations. In addition, the developed HF5 methods have proven to be rapid, highly selective, sensitive and repeatable. HF5 was ideally suitable as first dimension of separation of aging-related protein aggregates from whole cell lysates (proteome pre-fractionation method) and, by HF5-(UV)-MALS online coupling, important biophysical information on the fractionated proteins and protein aggregates was gathered: size (rms radius and hydrodynamic radius), absolute MW and conformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Proteinhomöostase wird in der Zelle von drei Stoffwechselwegen reguliert: den molekularen Chaperonen, dem Ubiquitin-Proteasom-System und dem autophagosomalen Abbauweg. Die (Makro)Autophagie verpackt und transportiert zytosolische Komponenten in Autophagosomen zu den Lysosomen, wo sie abgebaut werden. Eine Störung dieses Abbauwegs wirkt auf die Proteostase.rnIn dieser Dissertation wurde C. elegans als Modellorganismus zur Erforschung von Proteinstabilität genutzt. In einer RNAi-vermittelten Proteostase-Analyse von Chromosom I und ausgewählter zusätzlicher Gene wurde ein Wurmstamm, der ein Luc::GFP-Konstrukt im Muskel exprimiert, genutzt. Dieses Reporterprotein aggregiert unter Hitzestressbedingungen und diese Aggregation kann durch Modulatoren der Proteostase beeinflusst werden. Dabei wurden mögliche neue Faktoren der Proteinhomöostase entdeckt. Durch weitere Experimente bei denen die Aggregation von PolyQ35::YFP im AM140-System, der Paralyse-Phänotyp und die Akkumulation Thioflavin S-gefärbter Aggregate von Aβ42 im CL2006-Wurmstamm und die Effekte auf die Autophagie mittels eines GFP::LGG1-Konstrukt analysiert wurden, konnten rbg-1 und rbg-2 als neue Modulatoren der Proteinhomöostase, insbesondere der Autophagie, identifiziert werden.rnIm Säuger bilden beide Orthologe dieser Gene, RAB3GAP1 und RAB3GAP2 den heterodimeren RAB3GAP-Komplex, der bisher nur bekannt war für die Stimulation der Umwandlung der GTP-gebundenen aktiven Form zur GDP-gebundenen inaktiven Form der RAB GTPase RAB3. In Immunoblot-Analysen und mikroskopischen Darstellungen im Säugersystem konnte gezeigt werden, dass die Effekte auf die Proteostase über den autophagosomalen Abbauweg wirken. RAB3GAP1/2 wirken als positive Stimulatoren, wenn die Lipidierung von LC3-I und der autophagische Flux von LC3-II und p62/SQSTM1 betrachtet werden. Diese Effekte werden aber nicht über die RAB GTPase RAB3 vermittelt. Die Proteine FEZ1 und FEZ2 haben einen antagonistischen Effekt auf die Autophagie und wenn alle vier Komponenten RAB3GAP1, RAB3GAP2, FEZ1 und FEZ2 zusammen herunter- oder hochreguliert werden, heben sich diese Effekte auf. In Co-Immunopräzipitationen und proteomischen Analysen konnte keine direkte Interaktion zwischen dem RAB3GAP-Komplex und FEZ1/2 oder zu anderen Autophagie-Genen nachgewiesen werden.rnHier konnte der RAB3GAP-Komplex funktionell mit Proteostase und Autophagie in C. elegans und Säugerzellen assoziiert werden. Dieser Komplex zeigt Einflüsse auf die autophagosomale Biogenese indem sie die Proteostase und die Bildung von (prä)autophagosomalen Strukturen in C. elegans und die Lipidierung von LC3 und damit den autophagischen Flux der Autophagiesubstrate LC3-II und p62/SQSTM1 in Säugerzellen beeinflusst. Darüber hinaus wirkt RAB3GAP der komplexen Autophagie-Unterdrückung durch FEZ1 und FEZ2 entgegen. Somit konnte gezeigt werden, dass RAB3GAP als neuartiger Faktor auf die autophagosomale Biogenese und somit auf die Proteostase wirkt.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A plasmid based genetic system was developed for the tail protein of the Salmonella typhimurium bacteriophage P22 and used to isolate and characterize tail protein mutants. The tail protein is a trimeric structural protein of the phage and an endorhamnosidase whose activity is essential for infection. The gene for the tail protein has previously been cloned into a plasmid expression vector and sequenced. A plate complementation assay for tail protein produced from the cloned gene was developed and used to isolate 27 tail protein mutants following mutagenesis of the cloned gene. These mutations were mapped into 12 deletion intervals using deletions which were made on plasmids in vitro and crossed onto P22. The base substitutions were determined by DNA sequencing. The majority of mutants had missense or nonsense mutations in the protein coding portion of the gene; however four of the mutants were in the putative transcription terminator. The oligomeric state of tail protein from the 15 missense mutants was investigated using SDS and nondenaturing polyacrylamide gel electrophoresis of cell lysates. Wild-type tail protein retains its trimeric structure in SDS gels at room temperature. Two of the mutant proteins also migrated as trimers in SDS gels, yet one of these had a considerably faster mobility than wild-type trimer. Its migration was the same as wild-type in a nondenaturing gel, so it is thought to be a trimer which is partially denatured by SDS. Four of the mutants produced proteins which migrate at the position of a monomer in an SDS gel but cannot be seen on a nondenaturing gel. These proteins are thought to be either monomers or soluble aggregates which cannot enter the nondenaturing gel. The remainder of mutants produce protein which is degraded. The mutant tail protein which had normal trimeric mobility on SDS and nondenaturing gels was purified. This protein has essentially wild-type ability to attach to phage capsids, but its endorhamnosidase activity is only 4% of wild-type. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed RNA-binding protein of the hnRNP family, that has been discovered as fused to transcription factors, through chromosomal translocations, in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis (ALS) [1]. To date, FUS/TLS has been implicated in a variety of cellular processes such as gene expression control, transcriptional regulation, pre-mRNA splicing and miRNA processing [2]. In addition, some evidences link FUS/TLS to genome stability control and DNA damage response. In fact, mice lacking FUS/TLS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and in response to double-strand breaks, FUS/TLS gets phosphorylated by the protein kinase ATM [3,4,5]. Furthermore, the inducible depletion of FUS/TLS in a neuroblastoma cell line (SH-SY5Y FUS/TLS TET-off iKD) subjected to genotoxic stress (IR) resulted in an increased phosphorylation of γH2AX respect to control cells, suggesting an higher activation of the DNA damage response. The study aims to investigate the specific role of FUS/TLS in DNA damage response through the characterization of the proteomic profile of SH-SY5Y FUS/TLS iKD cells subjected to DNA damage stress, by mass spectrometry-based quantitative proteomics (e.g. SILAC). Preliminary results of mass spectrometric identification of FUS/TLS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS/TLS protein, highlighted the interactions with several proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS/TLS is involved in this pathway, even thou its exact role still need to be addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, a ubiquitously expressed RNA-binding protein, has been linked to a variety of cellular processes, such as RNA metabolism, microRNA biogenesis and DNA repair. However, the precise role of FUS protein remains unclear. Recently, FUS has been linked to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disorder characterized by the dysfunction and death of motor neurons. Based on the observation that some mutations in the FUS gene induce cytoplasmic accumulation of FUS aggregates, we decided to explore a loss-of-function situation (i.e. inhibition of FUS’ nuclear function) to unravel the role of this protein. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line which expresses a doxycycline induced shRNA targeting FUS and that specifically depletes the protein. In order to characterize this cell line, we have performed a whole transcriptome analysis by RNA deep sequencing. Preliminary results show that FUS depletion affects both expression and alternative splicing levels of several RNAs. When FUS is depleted we observed 330 downregulated and 81 upregulated genes. We also found that 395 splicing isoforms were downregulated, while 426 were upregulated. Currently, we are focusing our attention on the pathways which are mostly affected by FUS depletion. In addition, to further characterize the FUS-depleted cell line we have performed growth proliferation and survival assays. From these experiments emerge that FUS-depleted cells display growth proliferation alteration. In order to explain this observation, we have tested different hypothesis (e.g. apoptosis, senescence or slow-down growth). We observed that FUS-depleted cells growth slower than controls. Currently, we are looking for putative candidate targets causing this phenotype. Finally, since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are exploring the effects of DNA damage in FUS-depleted cells by monitoring important components of DNA Damage Response (DDR). Taken together, these studies may contribute to our knowledge of the role of FUS in these cellular processes and will allow us to draw a clearer picture of mechanisms of neurodegenerative diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, a ubiquitously expressed and highly conserved RNA binding protein, has been linked to a variety of cellular processes from mRNA processing to DNA repair. However, the precise function of FUS is not well understood. Recently, mutations in the FUS gene have been identified in familial and sporadic patients of Amyotrophic Lateral Sclerosis, a fatal neurodegenerative disorder characterized by dysfunction and death of motor neurons. Based on the observation that some mutations in the FUS gene induce cytoplasmic accumulation of FUS aggregates, we decided to explore a loss-of-function situation (i.e. inhibition of FUS’ nuclear function) to unravel the role of this protein. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line which expresses a doxycycline induced shRNA targeting FUS that efficiently depletes the protein. In order to characterize this cell line, we have characterized the poly(A) fraction by RNA deep sequencing. Preliminary results show that FUS depletion affects both mRNA expression and alternative splicing. Upon FUS depletion 330 genes are downregulated and 81 are upregulated. We also found that 395 splicing isoforms were downregulated, while 426 were upregulated. Currently, we are focusing our attention on the pathways which are mostly affected by FUS depletion. In addition, we are currently characterizing how FUS depletion affects cell proliferation and survival. We find that the lack of FUS impairs cell proliferation but does not induce apoptosis. Finally, since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are exploring the effects of DNA damage in FUS-depleted cells by monitoring important components of DNA Damage Response (DDR). Taken together, these studies may contribute to our knowledge of the role of FUS in these cellular processes and will allow us to draw a clearer picture of mechanisms of neurodegenerative diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed protein of the hnRNP family, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [Vance C. et al., 2009]. FUS is a 53 kDa nuclear protein that contains structural domains, such as a RNA Recognition Motif (RRM) and a zinc finger motif, that give to FUS the ability to bind to both RNA and DNA sequences. It has been implicated in a variety of cellular processes, such as pre-mRNA splicing, miRNA processing, gene expression control and transcriptional regulation [Fiesel FC. and Kahle PJ., 2011]. Moreover, some evidences link FUS to genome stability control and DNA damage response: mice lacking FUS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and, in response to double-strand breaks, FUS is phosphorylated by the protein kinase ATM [Kuroda M. et al., 2000; Hicks GG. et al., 2000; Gardiner M. et al., 2008]. Furthermore, preliminary results of mass spectrometric identification of FUS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS protein, highlighted the interactions with proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS is involved in this pathway, even though its role still needs to be clarified. This study aims to investigate the biological roles of FUS in human cells and in particular the putative role in DNA damage response through the characterization of the proteomic profile of the neuroblastoma cell line SH-SY5Y upon FUS inducible depletion, by a quantitative proteomic approach. The SH-SY5Y cell line that will be used in this study expresses, in presence of tetracycline, a shRNA that targets FUS mRNA, leading to FUS protein depletion (SH-SY5Y FUS iKD cells). To quantify changes in proteins expression levels a SILAC strategy (Stable Isotope Labeling by Amino acids in Cell culture) will be conducted on SH-SY5Y FUS iKD cells and a control SH-SY5Y cell line (that expresses a mock shRNA) and the relative changes in proteins levels will be evaluated after five and seven days upon FUS depletion, by nanoliquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS) and bioinformatics analysis. Preliminary experiments demonstrated that the SH-SY5Y FUS iKD cells, when subjected to genotoxic stress (high dose of IR), upon inducible depletion of FUS, showed a increased phosphorylation of gH2AX with respect to control cells, suggesting an higher activation of the DNA damage response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A common pathological hallmark of most neurodegenerative disorders is the presence of protein aggregates in the brain. Understanding the regulation of aggregate formation is thus important for elucidating disease pathogenic mechanisms and finding effective preventive avenues and cures. Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a selective neurodegenerative disorder predominantly affecting motor neurons. The majority of ALS cases are sporadic, however, mutations in superoxide dismutase 1 (SOD1) are responsible for about 20% of familial ALS (fALS). Mutated SOD1 proteins are prone to misfold and form protein aggregates, thus representing a good candidate for studying aggregate formation. The long-term goal of this project is to identify regulators of aggregate formation by mutant SOD1 and other ALS-associated disease proteins. The specific aim of this thesis project is to assess the possibility of using the well-established Drosophila model system to study aggregation by human SOD1 (hSOD1) mutants. To this end, using wild type and the three mutant hSOD1 (A4V, G85R and G93A) most commonly found among fALS, I have generated 16 different SOD1 constructs containing either eGFP or mCherry in-frame fluorescent reporters, established and tested both cell- and animal-based Drosophila hSOD1 models. The experimental strategy allows for clear visualization of ectopic hSOD1 expression as well as versatile co-expression schemes to fully investigate protein aggregation specifically by mutant hSOD1. I have performed pilot cell-transfection experiments and verified induced expression of hSOD1 proteins. Using several tissue- or cell type-specific Gal4 lines, I have confirmed the proper expression of hSOD1 from established transgenic fly lines. Interestingly, in both Drosophila S2 cells and different fly tissues including the eye and motor neurons, robust aggregate formation by either wild type or mutant hSOD1 proteins was not observed. These preliminary observations suggest that Drosophila might not be a good experimental organism to study aggregation and toxicity of mutant hSOD1 protein. Nevertheless this preliminary conclusion implies the potential existence of a potent protective mechanism against mutant hSOD1 aggregation and toxicity in Drosophila. Thus, results from my SOD1-ALS project in Drosophila will help future studies on how to best employ this classic model organism to study ALS and other human brain degenerative diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the population of the world aging, the prominence of diseases such as Type II Diabetes (T2D) and Alzheimer’s disease (AD) are on the rise. In addition, patients with T2D have an increased risk of developing AD compared to age-matched individuals, and the number of AD patients with T2D is higher than among aged-matched non-AD patients. AD is a chronic and progressive dementia characterized by amyloid-beta (Aβ) plaques, neurofibrillary tangles (NFTs), neuronal loss, brain inflammation, and cognitive impairment. T2D involves the dysfunctional use of pancreatic insulin by the body resulting in insulin resistance, hyperglycemia, hyperinsulinemia, pancreatic beta cell (β-cell) death, and other complications. T2D and AD are considered protein misfolding disorders (PMDs). PMDs are characterized by the presence of misfolded protein aggregates, such as in T2D pancreas (islet amyloid polypeptide - IAPP) and in AD brain (amyloid– Aβ) of affected individuals. The misfolding and accumulation of these proteins follows a seeding-nucleation model where misfolded soluble oligomers act as nuclei to propagate misfolding by recruiting other native proteins. Cross-seeding occurs when oligomers composed by one protein seed the aggregation of a different protein. Our hypothesis is that the pathological interactions between T2D and AD may in part occur through cross-seeding of protein misfolding. To test this hypothesis, we examined how each respective aggregate (Aβ or IAPP) affects the disparate disease pathology through in vitro and in vivo studies. Assaying Aβ aggregates influence on T2D pathology, IAPP+/+/APPSwe+/- double transgenic (DTg) mice exhibited exacerbated T2D-like pathology as seen in elevated hyperglycemia compared to controls; in addition, IAPP levels in the pancreas are highest compared to controls. Moreover, IAPP+/+/APPSwe+/- animals demonstrate abundant plaque formation and greater plaque density in cortical and hippocampal areas in comparison to controls. Indeed, IAPP+/+/APPSwe+/- exhibit a colocalization of both misfolded proteins in cerebral plaques suggesting IAPP may directly interact with Aβ and aggravate AD pathology. In conclusion, these studies suggest that cross-seeding between IAPP and Aβ may occur, and that these protein aggregates exacerbate and accelerate disease pathology, respectively. Further mechanistic studies are necessary to determine how these two proteins interact and aggravate both pancreatic and brain pathologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the addition of soy protein isolate (SPI) (0, 15, 30, 45 and 60 g kg ) on viscoelastic properties, large deformation measurements and microstructure of fresh (FM) and frozen/thawed (F/TM) mashed potatoes was investigated. Rheological data showed weak gel behaviour for both FM and F/TM potatoes without and with added SPI together with a signi?cant decrease of system viscoelasticity (G and G ) with increasing SPI volume fraction, primarily attributed to the no interaction between the amylose/amylopectine matrix and the dispersed SPI particles or aggregates as revealed by scanning electron microscopy (SEM). Micrographs also showed that SPI formed white coarse aggregates. A freeze/thaw cycle produced a more signi?cant decrease in viscoelastic functions, due to superior aggregation of denatured SPI and reduced water activity. In F/TM samples, high correlations between small and large deformation measurements were found. Results may be useful for technological applications in SPI-enriched.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current model for bacterial cell division, FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other proteins such as FtsA. This putative protein complex ultimately generates the division septum. Herein we report that FtsZ and FtsA proteins tagged with green fluorescent protein (GFP) colocalize to division-site ring-like structures in living bacterial cells in a visible space between the segregated nucleoids. Cells with higher levels of FtsZ–GFP or with FtsA–GFP plus excess wild-type FtsZ were inhibited for cell division and often exhibited bright fluorescent spiral tubules that spanned the length of the filamentous cells. This suggests that FtsZ may switch from a septation-competent localized ring to an unlocalized spiral under some conditions and that FtsA can bind to FtsZ in both conformations. FtsZ–GFP also formed nonproductive but localized aggregates at a higher concentration that could represent FtsZ nucleation sites. The general domain structure of FtsZ–GFP resembles that of tubulin, since the C terminus of FtsZ is not required for polymerization but may regulate polymerization state. The N-terminal portion of Rhizobium FtsZ polymerized in Escherichia coli and appeared to copolymerize with E. coli FtsZ, suggesting a degree of interspecies functional conservation. Analysis of several deletions of FtsA–GFP suggests that multiple segments of FtsA are important for its localization to the FtsZ ring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyloid plaques in Alzheimer disease are primarily aggregates of Aβ peptides that are derived from the amyloid precursor protein (APP). Neurotransmitter agonists that activate phosphatidylinositol hydrolysis and protein kinase C stimulate APP processing and generate soluble, non-amyloidogenic APP (APPs). Elevations in cAMP oppose this stimulatory effect and lead to the accumulation of cell-associated APP holoprotein containing amyloidogenic Aβ peptides. We now report that cAMP signaling can also increase cellular levels of APP holoprotein by stimulating APP gene expression in astrocytes. Treatment of astrocytes with norepinephrine or isoproterenol for 24 h increased both APP mRNA and holoprotein levels, and these increases were blocked by the β-adrenergic antagonist propranolol. Treatment with 8-bromo-adenosine 3′,5′-cyclic monophosphate or forskolin for 24 h similarly increased APP holoprotein levels; astrocytes were also transformed into process-bearing cells expressing increased amounts of glial fibrillary acidic protein, suggesting that these cells resemble reactive astrocytes. The increases in APP mRNA and holoprotein in astrocytes caused by cAMP stimulation were inhibited by the immunosuppressant cyclosporin A. Our study suggests that APP overexpression by reactive astrocytes during neuronal injury may contribute to Alzheimer disease neuropathology, and that immunosuppressants can inhibit cAMP activation of APP gene transcription.