951 resultados para Propagation
Resumo:
In this paper the kinematics of a curved shock of arbitrary strength has been discussed using the theory of generalised functions. This is the extension of Moslov’s work where he has considered isentropic flow even across the shock. The condition for a nontrivial jump in the flow variables gives the shock manifold equation (sme). An equation for the rate of change of shock strength along the shock rays (defined as the characteristics of the sme) has been obtained. This exact result is then compared with the approximate result of shock dynamics derived by Whitham. The comparison shows that the approximate equations of shock dynamics deviate considerably from the exact equations derived here. In the last section we have derived the conservation form of our shock dynamic equations. These conservation forms would be very useful in numerical computations as it would allow us to derive difference schemes for which it would not be necessary to fit the shock-shock explicitly.
Resumo:
Ca2+ ions are absolutely necessary for the propagation of mycobacteriophage I3 in synthetic medium. These ions are required for successful infection of the host and during the entire span of the intracellular development of the phage. A direct assay of the phage DNA injection using 32[P] labelled phage, showns that Ca2+ ions are necessary for the injection process. The injection itself is a slow process and takes 15 min to complete at 37°C. The bacteria infected in presence of Ca2+ tend to abort if the ions are subsequently withdrawn from the growth medium. The effect of calcium withdrawal is maximally felt during the early part of the latent period; however, later supplementation of Ca2+ ions salvage phage production and the mature phage progeny appear after a delayed interval, proportional to the time of addition of Ca2+.
Resumo:
By using a perturbation technique, the Korteweg-de Vries equation is derived for a mixture of warm-ion fluid and hot, isothermal electrons. Stationary solutions are obtained for this equation and are compared with the corresponding solutions for a mixture consisting of cold-ion fluid and hot, isothermal electrons.
Resumo:
In order to assess the structural reliability of bridges, an accurate and cost effective Non-Destructive Evaluation (NDE) technology is required to ensure their safe and reliable operation. Over 60% of the Australian National Highway System is prestressed concrete (PSC) bridges according to the Bureau of Transport and Communication Economics (1997). Most of the in-service bridges are more than 30 years old and may experience a heavier traffic load than their original intended level. Use of Ultrasonic waves is continuously increasing for (NDE) and Structural Health Monitoring (SHM) in civil, aerospace, electrical, mechanical applications. Ultrasonic Lamb waves are becoming more popular for NDE because it can propagate long distance and reach hidden regions with less energy loses. The purpose of this study is to numerically quantify prestress force (PSF) of (PSC) beam using the fundamental theory of acoustic-elasticity. A three-dimension finite element modelling approach is set up to perform parametric studies in order to better understand how the lamb wave propagation in PSC beam is affected by changing in the PSF level. Results from acoustic-elastic measurement on prestressed beam are presented, showing the feasibility of the lamb wave for PSF evaluation in PSC bridges.
Resumo:
A parametric study of the flood wave propagation problem is made, based on numerical solution of the nondimensionalized unsteady flow equations of open channels. The propagation of a sinusoidal flood wave in a prismatic channel is studied for uniform initial flow. The governing parameters (initial uniform flow Froude number, wave amplitude, wave duration, channel width parameter and side slope) are varied over a wide range. In all, 49 cases are studied. Effects of these governing parameters on the subsidence of stage and discharge and the speed of the wave peak are described in detail. The relative wave amplitude is found to vary linearly with F0, the initial uniform flow froude number, for lower F0 values. Wave duration has a very pronounced effect on subsidence with greater subsidence at lower wave duration values.
Resumo:
Explosive driven micro blast waves are generated in the laboratory using NONEL tubes. The explosive mixture coated to the inner walls of the plastic Nonel tube comprises of HMX and Aluminum ( 18mg/m). The detonation is triggered electrically to generate micro blast waves from the open end of the tube. Flow visualization and over pressure measurements have been carried out to understand the propagation dynamics of these micro-blast waves in both confined and unconfined domains. The classical cubic root law used for large scale blast correlation appears to hold good even for these micro-blasts generated in the laboratory.
Resumo:
The authors derive the Korteweg-de Vries equation in a multicomponent plasma that includes any number of positive and negative ions. The solitary wave solutions are also found explicitly for the case of isothermal and non-isothermal electrons.
Resumo:
The propagation characteristics of a visco-elastic fluid in a distensible tube tube are studied. The linear visco-elastic nature of the fluid is described by a complex coefficient of viscosity η*. The equation of motion of the vessel wall takes into account the pulsatile nature of the wall. Results are presented for wave propagation velocity, the resistance and the reactance of the fluid and the wall impedance. It is seen that the visco-elastic influence is significant for high values of the frequency of oscillation in various arterial vessels.
Resumo:
Using a perturbation technique, we derive Modified Korteweg—de Vries (MKdV) equations for a mixture of warm-ion fluid (γ i = 3) and hot and non-isothermal electrons (γ e> 1), (i) when deviations from isothermality are finite, and (ii) when deviations from isothermality are small. We obtain stationary solutions for these equations, and compare them with the corresponding solutions for a mixture of warm-ion fluid (γ i = 3) and hot, isothermal electrons (γ i = 1).
Resumo:
Abstract is not available.
Resumo:
A theoretical study on the propagation of plane waves in the presence of a hot mean flow in a uniform pipe is presented. The temperature variation in the pipe is taken to be a linear temperature gradient along the axis. The theoretical studies include the formulation of a wave equation based on continuity, momentum, and state equation, and derivation of a general four-pole matrix, which is shown to yield the well-known transfer matrices for several other simpler cases.
Resumo:
This paper represents the effect of nonlocal scale parameter on the wave propagation in multi-walled carbon nanotubes (MWCNTs). Each wall of the MWCNT is modeled as first order shear deformation beams and the van der Waals interactions between the walls are modeled as distributed springs. The studies shows that the scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or group speed tends to zero). The frequency at which this phenomenon occurs is called the ``Escape frequency''. The analysis shows that, for a given N-walled carbon nanotube (CNT). the nonlocal scaling parameter has a significant effect on the shear wave modes of the N - 1 walls. The escape frequencies of the flexural and shear wave modes of the N-walls are inversely proportionl to the nonlocal scaling parameter. It is also shown that the cut-off frequencies are independent of the nonlocal scale parameter. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a formulation of an approximate spectral element for uniform and tapered rotating Euler-Bernoulli beams. The formulation takes into account the varying centrifugal force, mass and bending stiffness. The dynamic stiffness matrix is constructed using the weak form of the governing differential equation in the frequency domain, where two different interpolating functions for the transverse displacement are used for the element formulation. Both free vibration and wave propagation analysis is performed using the formulated elements. The studies show that the formulated element predicts results, that compare well with the solution available in the literature, at a fraction of the computational effort. In addition, for wave propagation analysis, the element shows superior convergence. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Wave propagation and its frequency bandgaps in a parametrically modulated composite laminate are reported in this paper. The modulated properties under considerations are due to periodic microstructure, for example honeycomb core sandwich composite, which can be parameterized and homogenized in a suitable scale. Wave equations are derived by assuming a third-order shear deformation theory. Homogenization of the wave equations is carried out in the scale of wavelength. In-plane wave and flexural-shear wave dispersions are obtained for a range of values of a stiffness modulation coefficient (alpha). A clear pattern of stop-bands is observed for alpha >= 4. To validate the band-gap phenomena, we take recourse to time domain response obtained from finite element simulation. As predicted by the proposed analytical technique, a distinct correlation between the chosen frequency band and the simulated wave arrival time and amplitude reduction is found. This promises practical applications of the proposed analytical technique to designing parametrically modulated composite laminate for wave suppression. (C) 2009 Elsevier B.V. All rights reserved.