991 resultados para Production spatial circuit
Resumo:
The present study investigates the spatial and spectral discrimination potential for grassland patches in the inner Turku Archipelago using Landsat Thematic Mapper satellite imagery. The spatial discrimination potential was computed through overlay analysis using official grassland parcel data and a hypothetical 30 m resolution satellite image capturing the site. It found that Landsat TM imagery’s ability to retrieve pure or near-pure pixels (90% purity or more) from grassland patches smaller than 1 hectare was limited to 13% success, compared to 52% success when upscaling the resolution to 10 x 10 m pixel size. Additionally, the perimeter/area patch metric is proposed as a predictor for the suitability of the spatial resolution of input imagery. Regression analysis showed that there is a strong negative correlation between a patch’s perimeter/area ratio and its pure pixel potential. The study goes on to characterise the spectral response and discrimination potential for the five main grassland types occurring in the study area: recreational grassland, traditional pasture, modern pasture, fodder production grassland and overgrown grassland. This was done through the construction of spectral response curves, a coincident spectral plot and a contingency matrix as well as by calculating the transformed divergence for the spectral signatures, all based on training samples from the TM imagery. Substantial differences in spectral discrimination potential between imagery from the beginning of the growing season and the middle of summer were found. This is because the spectral responses for these five grassland types converge as the peak of the growing season draws nearer. Recreational grassland shows a consistent discrimination advantage over other grassland types, whereas modern pasture is most easily confused. Traditional pasture land, perhaps the most biologically valuable grassland type, can be spectrally discriminated from other grassland types with satisfactory success rates provided early growing season imagery is used.
Resumo:
In the last few years, precision agriculture has become commonly used with many crops, particularly cereals, and there is also interest in precision horticulture. Pear is a seasonal fruit and well appreciated by Brazilian people, although it is mostly imported. Brazilian farmers are nowadays trying to increase pear production. Thus, this research aimed at mapping the yield of pear trees in order to study the spatial variability of yield as well as its comparison with spatial variability of soil and plant attributes. The experimental field had 146 pear trees, variety 'Pêra d'água', distributed on a 1.24 ha. Four harvests were performed according to the fruit ripening and from each tree; only the ripe fruits were harvested. In each harvest, all the fruits were weighed and the total yield was obtained based on the sum of each harvest. The soil attributes analyzed were P, K, Ca, Mg, pH in CaCl2, C, Cu, Zn, Fe, Mn and base saturation, and the plant attributes were fruit length, diameter and yield. Yield had low correlation with soil and plant attributes. An index of spatial variability was suggested in this study and helped in classifying levels of spatial dependence of the various soil and plant attributes: very low (fruit length); low (P, fruit diameter), medium (Mg, pH, Cu, Zn, Fe), high (Ca, K, base saturation and yield), and very high (Mn and C).
Resumo:
ABSTRACT The present study aims to present the main concepts of the sugarcane straw to energy planning. Throughout the study, the subject is contextualized highlighting broader aspects of sustainability, which is considered the main driver towards agro-energy modernization. Concerning sugarcane straw, we first evaluated its availability regarding technical and economic aspects, and then it summarized the straw production chain for energy supply purposes. As a proposal to support agro-energy planning, it is presented some spatial tools that have been barely used in the Brazilian energy planning context so far. Therefore, working on straw to electricity associated with supply chain basis, we developed a conceptual model to spatially assess this bioenergy system. Using the model proposed, it is described the whole supply chain at state level, which accounted the potential of a single mill to explore straw, as well as main costs associated with straw acquisition, investments on the straw recovery routes and electricity transmission. Bearing these concepts in mind, it is fully believed that spatial analysis can bring important information for agro-energy action plans.
Resumo:
Brazil has high climate, soil and environmental diversity, as well as distinct socioeconomic and political realities, what results in differences among the political administrative regions of the country. The objective of this study was to determine spatial distribution of the physical, climatic and socioeconomic aspects that best characterize the production of dairy goats in Brazil. Production indices of milk per goat, goat production, milk production, as well as temperature range, mean temperature, precipitation, normalized difference vegetation index, relative humidity, altitude, agricultural farms; farms with native pasture, farms with good quality pasture, farms with water resources, farms that receive technical guidance, family farming properties, non-familiar farms and the human development index were evaluated. The multivariate analyses were carried out to spatialize climatic, physical and socioeconomic variables and so differenciate the Brazilian States and Regions. The highest yields of milk and goat production were observed in the Northeast. The Southeast Region had the second highest production of milk, followed by the South, Midwest and North. Multivariate analysis revealed distinctions between clusters of political-administrative regions of Brazil. The climatic variables were most important to discriminate between regions of Brazil. Therefore, it is necessary to implement animal breeding programs to meet the needs of each region.
Resumo:
Wind power is a low-carbon energy production form that reduces the dependence of society on fossil fuels. Finland has adopted wind energy production into its climate change mitigation policy, and that has lead to changes in legislation, guidelines, regional wind power areas allocation and establishing a feed-in tariff. Wind power production has indeed boosted in Finland after two decades of relatively slow growth, for instance from 2010 to 2011 wind energy production increased with 64 %, but there is still a long way to the national goal of 6 TWh by 2020. This thesis introduces a GIS-based decision-support methodology for the preliminary identification of suitable areas for wind energy production including estimation of their level of risk. The goal of this study was to define the least risky places for wind energy development within Kemiönsaari municipality in Southwest Finland. Spatial multicriteria decision analysis (SMCDA) has been used for searching suitable wind power areas along with many other location-allocation problems. SMCDA scrutinizes complex ill-structured decision problems in GIS environment using constraints and evaluation criteria, which are aggregated using weighted linear combination (WLC). Weights for the evaluation criteria were acquired using analytic hierarchy process (AHP) with nine expert interviews. Subsequently, feasible alternatives were ranked in order to provide a recommendation and finally, a sensitivity analysis was conducted for the determination of recommendation robustness. The first study aim was to scrutinize the suitability and necessity of existing data for this SMCDA study. Most of the available data sets were of sufficient resolution and quality. Input data necessity was evaluated qualitatively for each data set based on e.g. constraint coverage and attribute weights. Attribute quality was estimated mainly qualitatively by attribute comprehensiveness, operationality, measurability, completeness, decomposability, minimality and redundancy. The most significant quality issue was redundancy as interdependencies are not tolerated by WLC and AHP does not include measures to detect them. The third aim was to define the least risky areas for wind power development within the study area. The two highest ranking areas were Nordanå-Lövböle and Påvalsby followed by Helgeboda, Degerdal, Pungböle, Björkboda, and Östanå-Labböle. The fourth aim was to assess the recommendation reliability, and the top-ranking two areas proved robust whereas the other ones were more sensitive.
Resumo:
This thesis considers optimization problems arising in printed circuit board assembly. Especially, the case in which the electronic components of a single circuit board are placed using a single placement machine is studied. Although there is a large number of different placement machines, the use of collect-and-place -type gantry machines is discussed because of their flexibility and increasing popularity in the industry. Instead of solving the entire control optimization problem of a collect-andplace machine with a single application, the problem is divided into multiple subproblems because of its hard combinatorial nature. This dividing technique is called hierarchical decomposition. All the subproblems of the one PCB - one machine -context are described, classified and reviewed. The derived subproblems are then either solved with exact methods or new heuristic algorithms are developed and applied. The exact methods include, for example, a greedy algorithm and a solution based on dynamic programming. Some of the proposed heuristics contain constructive parts while others utilize local search or are based on frequency calculations. For the heuristics, it is made sure with comprehensive experimental tests that they are applicable and feasible. A number of quality functions will be proposed for evaluation and applied to the subproblems. In the experimental tests, artificially generated data from Markov-models and data from real-world PCB production are used. The thesis consists of an introduction and of five publications where the developed and used solution methods are described in their full detail. For all the problems stated in this thesis, the methods proposed are efficient enough to be used in the PCB assembly production in practice and are readily applicable in the PCB manufacturing industry.
Resumo:
In the present study an attempt has been made to understand the microzooplankton community along the easr coast of India. Most of the earlier studies projected Bay of Bengal as an oligotrophic system where phytoplankton growth is limited by a number of factors among which nutrients are the foremost. Hence it is logical to consider that the most of the primary production in the Bay of Bengal could be contributed by small sized phytoplankton harnessing the available resources, which in turn can be utilized effiency by the microzooplankton only. Hence microzooplankton could play in transferring primary organic carbon to higher tropic levels in this region.
Resumo:
This thesis entitled spatial and temporal variarion of microbial community structure in surficial sediments of cochin estuary.In the estuarine and coastal systems, organic matter (OM) is derived not only from autochthonous primary production, but also from allochthonous (terrestrial) organic matter (OM) delivered by river discharge and runoff. A significant portion of the OM sinks through the water column and is ultimately stored in carbon pool in the sediments.Analysis of spatial and temporal variation in benthic microbial community of a tropical estuary was conducted for the first time using non selective measures that affirms that PLFA approach is a sensitive and reliable method in determining microbial community structures of surficial sediments of estuary.The close relationship between the concentrations of the microbial fatty acids and total biomass indicates that bacteria could account for the largest proportion of the biomass in the sediments.This is first study that has documented the changes in microbial community composition linkage to biotic and abiotic variables in benthic estuarine ecosystem. This contemporaneous community will be the backdrop for understanding the response of autochthonous community to increasing anthropogenic stress.
Resumo:
Landwirtschaft spielt eine zentrale Rolle im Erdsystem. Sie trägt durch die Emission von CO2, CH4 und N2O zum Treibhauseffekt bei, kann Bodendegradation und Eutrophierung verursachen, regionale Wasserkreisläufe verändern und wird außerdem stark vom Klimawandel betroffen sein. Da all diese Prozesse durch die zugrunde liegenden Nährstoff- und Wasserflüsse eng miteinander verknüpft sind, sollten sie in einem konsistenten Modellansatz betrachtet werden. Dennoch haben Datenmangel und ungenügendes Prozessverständnis dies bis vor kurzem auf der globalen Skala verhindert. In dieser Arbeit wird die erste Version eines solchen konsistenten globalen Modellansatzes präsentiert, wobei der Schwerpunkt auf der Simulation landwirtschaftlicher Erträge und den resultierenden N2O-Emissionen liegt. Der Grund für diese Schwerpunktsetzung liegt darin, dass die korrekte Abbildung des Pflanzenwachstums eine essentielle Voraussetzung für die Simulation aller anderen Prozesse ist. Des weiteren sind aktuelle und potentielle landwirtschaftliche Erträge wichtige treibende Kräfte für Landnutzungsänderungen und werden stark vom Klimawandel betroffen sein. Den zweiten Schwerpunkt bildet die Abschätzung landwirtschaftlicher N2O-Emissionen, da bislang kein prozessbasiertes N2O-Modell auf der globalen Skala eingesetzt wurde. Als Grundlage für die globale Modellierung wurde das bestehende Agrarökosystemmodell Daycent gewählt. Neben der Schaffung der Simulationsumgebung wurden zunächst die benötigten globalen Datensätze für Bodenparameter, Klima und landwirtschaftliche Bewirtschaftung zusammengestellt. Da für Pflanzzeitpunkte bislang keine globale Datenbasis zur Verfügung steht, und diese sich mit dem Klimawandel ändern werden, wurde eine Routine zur Berechnung von Pflanzzeitpunkten entwickelt. Die Ergebnisse zeigen eine gute Übereinstimmung mit Anbaukalendern der FAO, die für einige Feldfrüchte und Länder verfügbar sind. Danach wurde das Daycent-Modell für die Ertragsberechnung von Weizen, Reis, Mais, Soja, Hirse, Hülsenfrüchten, Kartoffel, Cassava und Baumwolle parametrisiert und kalibriert. Die Simulationsergebnisse zeigen, dass Daycent die wichtigsten Klima-, Boden- und Bewirtschaftungseffekte auf die Ertragsbildung korrekt abbildet. Berechnete Länderdurchschnitte stimmen gut mit Daten der FAO überein (R2 = 0.66 für Weizen, Reis und Mais; R2 = 0.32 für Soja), und räumliche Ertragsmuster entsprechen weitgehend der beobachteten Verteilung von Feldfrüchten und subnationalen Statistiken. Vor der Modellierung landwirtschaftlicher N2O-Emissionen mit dem Daycent-Modell stand eine statistische Analyse von N2O-und NO-Emissionsmessungen aus natürlichen und landwirtschaftlichen Ökosystemen. Die als signifikant identifizierten Parameter für N2O (Düngemenge, Bodenkohlenstoffgehalt, Boden-pH, Textur, Feldfrucht, Düngersorte) und NO (Düngemenge, Bodenstickstoffgehalt, Klima) entsprechen weitgehend den Ergebnissen einer früheren Analyse. Für Emissionen aus Böden unter natürlicher Vegetation, für die es bislang keine solche statistische Untersuchung gab, haben Bodenkohlenstoffgehalt, Boden-pH, Lagerungsdichte, Drainierung und Vegetationstyp einen signifikanten Einfluss auf die N2O-Emissionen, während NO-Emissionen signifikant von Bodenkohlenstoffgehalt und Vegetationstyp abhängen. Basierend auf den daraus entwickelten statistischen Modellen betragen die globalen Emissionen aus Ackerböden 3.3 Tg N/y für N2O, und 1.4 Tg N/y für NO. Solche statistischen Modelle sind nützlich, um Abschätzungen und Unsicherheitsbereiche von N2O- und NO-Emissionen basierend auf einer Vielzahl von Messungen zu berechnen. Die Dynamik des Bodenstickstoffs, insbesondere beeinflusst durch Pflanzenwachstum, Klimawandel und Landnutzungsänderung, kann allerdings nur durch die Anwendung von prozessorientierten Modellen berücksichtigt werden. Zur Modellierung von N2O-Emissionen mit dem Daycent-Modell wurde zunächst dessen Spurengasmodul durch eine detailliertere Berechnung von Nitrifikation und Denitrifikation und die Berücksichtigung von Frost-Auftau-Emissionen weiterentwickelt. Diese überarbeitete Modellversion wurde dann an N2O-Emissionsmessungen unter verschiedenen Klimaten und Feldfrüchten getestet. Sowohl die Dynamik als auch die Gesamtsummen der N2O-Emissionen werden befriedigend abgebildet, wobei die Modelleffizienz für monatliche Mittelwerte zwischen 0.1 und 0.66 für die meisten Standorte liegt. Basierend auf der überarbeiteten Modellversion wurden die N2O-Emissionen für die zuvor parametrisierten Feldfrüchte berechnet. Emissionsraten und feldfruchtspezifische Unterschiede stimmen weitgehend mit Literaturangaben überein. Düngemittelinduzierte Emissionen, die momentan vom IPCC mit 1.25 +/- 1% der eingesetzten Düngemenge abgeschätzt werden, reichen von 0.77% (Reis) bis 2.76% (Mais). Die Summe der berechneten Emissionen aus landwirtschaftlichen Böden beträgt für die Mitte der 1990er Jahre 2.1 Tg N2O-N/y, was mit den Abschätzungen aus anderen Studien übereinstimmt.
Resumo:
Globalization is widely regarded as the rise of the borderless world. However in practice, true globalization points rather to a “spatial logic” by which globalization is manifested locally in the shape of insular space. Globalization in this sense is not merely about the creation of physical fragmentation of space but also the creation of social disintegration. This study tries to proof that global processes also create various forms of insular space leading also to specific social implications. In order to examine the problem this study looks at two cases: China’s Pearl River Delta (PRD) and Jakarta in Indonesia. The PRD case reveals three forms of insular space namely the modular, concealed and the hierarchical. The modular points to the form of enclosed factories where workers are vulnerable for human-right violations due to the absent of public control. The concealed refers to the production of insular space by subtle discrimination against certain social groups in urban space. And the hierarchical points to a production of insular space that is formed by an imbalanced population flow. The Jakarta case attempts to show more types of insularity in relation to the complexity of a mega-city which is shaped by a culture of exclusion. Those are dormant and hollow insularity. The dormant refers to the genesis of insular– radical – community from a culture of resistance. The last type, the hollow, points to the process of making a “pseudo community” where sense of community is not really developed as well as weak social relationship with its surrounding. Although global process creates various expressions of territorial insularization, however, this study finds that the “line of flight” is always present, where the border of insularity is crossed. The PRD’s produces vernacular modernization done by peasants which is less likely to be controlled by the politics of insularization. In Jakarta, the culture of insularization causes urban informalities that have no space, neither spatially nor socially; hence their state of ephemerality continues as a tactic of place-making. This study argues that these crossings possess the potential for reconciling venue to defuse the power of insularity.
Resumo:
Land use has become a force of global importance, considering that 34% of the Earth’s ice-free surface was covered by croplands or pastures in 2000. The expected increase in global human population together with eminent climate change and associated search for energy sources other than fossil fuels can, through land-use and land-cover changes (LUCC), increase the pressure on nature’s resources, further degrade ecosystem services, and disrupt other planetary systems of key importance to humanity. This thesis presents four modeling studies on the interplay between LUCC, increased production of biofuels and climate change in four selected world regions. In the first study case two new crop types (sugarcane and jatropha) are parameterized in the LPJ for managed Lands dynamic global vegetation model for calculation of their potential productivity. Country-wide spatial variation in the yields of sugarcane and jatropha incurs into substantially different land requirements to meet the biofuel production targets for 2015 in Brazil and India, depending on the location of plantations. Particularly the average land requirements for jatropha in India are considerably higher than previously estimated. These findings indicate that crop zoning is important to avoid excessive LUCC. In the second study case the LandSHIFT model of land-use and land-cover changes is combined with life cycle assessments to investigate the occurrence and extent of biofuel-driven indirect land-use changes (ILUC) in Brazil by 2020. The results show that Brazilian biofuels can indeed cause considerable ILUC, especially by pushing the rangeland frontier into the Amazonian forests. The carbon debt caused by such ILUC would result in no carbon savings (from using plant-based ethanol and biodiesel instead of fossil fuels) before 44 years for sugarcane ethanol and 246 years for soybean biodiesel. The intensification of livestock grazing could avoid such ILUC. We argue that such an intensification of livestock should be supported by the Brazilian biofuel sector, based on the sector’s own interest in minimizing carbon emissions. In the third study there is the development of a new method for crop allocation in LandSHIFT, as influenced by the occurrence and capacity of specific infrastructure units. The method is exemplarily applied in a first assessment of the potential availability of land for biogas production in Germany. The results indicate that Germany has enough land to fulfill virtually all (90 to 98%) its current biogas plant capacity with only cultivated feedstocks. Biogas plants located in South and Southwestern (North and Northeastern) Germany might face more (less) difficulties to fulfill their capacities with cultivated feedstocks, considering that feedstock transport distance to plants is a crucial issue for biogas production. In the fourth study an adapted version of LandSHIFT is used to assess the impacts of contrasting scenarios of climate change and conservation targets on land use in the Brazilian Amazon. Model results show that severe climate change in some regions by 2050 can shift the deforestation frontier to areas that would experience low levels of human intervention under mild climate change (such as the western Amazon forests or parts of the Cerrado savannas). Halting deforestation of the Amazon and of the Brazilian Cerrado would require either a reduction in the production of meat or an intensification of livestock grazing in the region. Such findings point out the need for an integrated/multicisciplinary plan for adaptation to climate change in the Amazon. The overall conclusions of this thesis are that (i) biofuels must be analyzed and planned carefully in order to effectively reduce carbon emissions; (ii) climate change can have considerable impacts on the location and extent of LUCC; and (iii) intensification of grazing livestock represents a promising venue for minimizing the impacts of future land-use and land-cover changes in Brazil.
Resumo:
Reducing carbon conversion of ruminally degraded feed into methane increases feed efficiency and reduces emission of this potent greenhouse gas into the environment. Accurate, yet simple, predictions of methane production of ruminants on any feeding regime are important in the nutrition of ruminants, and in modeling methane produced by them. The current work investigated feed intake, digestibility and methane production by open-circuit respiration measurements in sheep fed 15 untreated, sodium hydroxide (NaOH) treated and anhydrous ammonia (NH3) treated wheat, barley and oat straws. In vitro fermentation characteristics of straws were obtained from incubations using the Hohenheim gas production system that measured gas production, true substrate degradability, short-chain fatty acid production and efficiency of microbial production from the ratio of truly degraded substrate to gas volume. In the 15 straws, organic matter (OM) intake and in vivo OM digestibility ranged from 563 to 1201 g and from 0.464 to 0.643, respectively. Total daily methane production ranged from 13.0 to 34.4 l, whereas methane produced/kg OM matter apparently digested in vivo varied from 35.0 to 61.8 l. The OM intake was positively related to total methane production (R2 = 0.81, P<0.0001), and in vivo OM digestibility was also positively associated with methane production (R2 = 0.67, P<0.001), but negatively associated with methane production/kg digestible OM intake (R2 = 0.61, P<0.001). In the in vitro incubations of the 15 straws, the ratio of acetate to propionate ranged from 2.3 to 2.8 (P<0.05) and efficiencies of microbial production ranged from 0.21 to 0.37 (P<0.05) at half asymptotic gas production. Total daily methane production, calculated from in vitro fermentation characteristics (i.e., true degradability, SCFA ratio and efficiency of microbial production) and OM intake, compared well with methane measured in the open-circuit respiration chamber (y = 2.5 + 0.86x, R2 = 0.89, P<0.0001, Sy.x = 2.3). Methane production from forage fed ruminants can be predicted accurately by simple in vitro incubations combining true substrate degradability and gas volume measurements, if feed intake is known.
Resumo:
The development of genetically modified (GM) crops has led the European Union (EU) to put forward the concept of 'coexistence' to give fanners the freedom to plant both conventional and GM varieties. Should a premium for non-GM varieties emerge in the market, 'contamination' by GM pollen would generate a negative externality to conventional growers. It is therefore important to assess the effect of different 'policy variables'on the magnitude of the externality to identify suitable policies to manage coexistence. In this paper, taking GM herbicide tolerant oilseed rape as a model crop, we start from the model developed in Ceddia et al. [Ceddia, M.G., Bartlett, M., Perrings, C., 2007. Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol. Modell. 205, pp. 169-180] use a Monte Carlo experiment to generate data and then estimate the effect of the number of GM and conventional fields, width of buffer areas and the degree of spatial aggregation (i.e. the 'policy variables') on the magnitude of the externality at the landscape level. To represent realistic conditions in agricultural production, we assume that detection of GM material in conventional produce might occur at the field level (no grain mixing occurs) or at the silos level (where grain mixing from different fields in the landscape occurs). In the former case, the magnitude of the externality will depend on the number of conventional fields with average transgenic presence above a certain threshold. In the latter case, the magnitude of the externality will depend on whether the average transgenic presence across all conventional fields exceeds the threshold. In order to quantify the effect of the relevant' policy variables', we compute the marginal effects and the elasticities. Our results show that when relying on marginal effects to assess the impact of the different 'policy variables', spatial aggregation is far more important when transgenic material is detected at field level, corroborating previous research. However, when elasticity is used, the effectiveness of spatial aggregation in reducing the externality is almost identical whether detection occurs at field level or at silos level. Our results show also that the area planted with GM is the most important 'policy variable' in affecting the externality to conventional growers and that buffer areas on conventional fields are more effective than those on GM fields. The implications of the results for the coexistence policies in the EU are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this determination has been made for the case of groundnut production in India. Rainfall is a dominant climatic determinant of groundnut yield in India. The relationship between yield and rainfall has been explored using data from 1966 to 1995. On the all-India scale, seasonal rainfall explains 52% of the variance in yield. On the subdivisional scale, correlations vary between variance r(2) = 0.62 (significance level p < 10(-4)) and a negative correlation with r(2) = 0.1 (p = 0.13). The spatial structure of the relationship between rainfall and groundnut yield has been explored using empirical orthogonal function (EOF) analysis. A coherent, large-scale pattern emerges for both rainfall and yield. On the subdivisional scale (similar to 300 km), the first principal component (PC) of rainfall is correlated well with the first PC of yield (r(2) = 0.53, p < 10(-4)), demonstrating that the large-scale patterns picked out by the EOFs are related. The physical significance of this result is demonstrated. Use of larger averaging areas for the EOF analysis resulted in lower and (over time) less robust correlations. Because of this loss of detail when using larger spatial scales, the subdivisional scale is suggested as an upper limit on the spatial scale for the proposed forecasting system. Further, district-level EOFs of the yield data demonstrate the validity of upscaling these data to the subdivisional scale. Similar patterns have been produced using data on both of these scales, and the first PCs are very highly correlated (r(2) = 0.96). Hence, a working spatial scale has been identified, typical of that used in seasonal weather forecasting, that can form the basis of crop modeling work for the case of groundnut production in India. Last, the change in correlation between yield and seasonal rainfall during the study period has been examined using seasonal totals and monthly EOFs. A further link between yield and subseasonal variability is demonstrated via analysis of dynamical data.
Resumo:
In this paper, the yield increases resulting from the cultivation of Bt cotton in Maharashtra, India, are analysed. The study relies on commercial farm, rather than trial, data and is among the first of its kind to be based on real farm and market conditions. Findings show that since its commercial release in 2002, Bt cotton has had a significant positive impact on yields and on the economic performance of cotton growers in Maharashtra. This difference remains even after controlling for different soil and insecticide inputs in the production of Bt cotton. There is also significant spatial and temporal variation in this 'benefit', and much depends upon where production is taking place and on the season.