77 resultados para Procoagulant


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Activation of endothelial cells (EC) in xenotransplantation is mostly induced through binding of antibodies (Ab) and activation of the complement system. Activated EC lose their heparan sulfate proteoglycan (HSPG) layer and exhibit a procoagulant and pro-inflammatory cell surface. We have recently shown that the semi-synthetic proteoglycan analog dextran sulfate (DXS, MW 5000) blocks activation of the complement cascade and acts as an EC-protectant both in vitro and in vivo. However, DXS is a strong anticoagulant and systemic use of this substance in a clinical setting might therefore be compromised. It was the aim of this study to investigate a novel, fully synthetic EC-protectant with reduced inhibition of the coagulation system. METHOD: By screening with standard complement (CH50) and coagulation assays (activated partial thromboplastin time, aPTT), a conjugate of tyrosine sulfate to a polymer-backbone (sTyr-PAA) was identified as a candidate EC-protectant. The pathway-specificity of complement inhibition by sTyr-PAA was tested in hemolytic assays. To further characterize the substance, the effects of sTyr-PAA and DXS on complement deposition on pig cells were compared by flow cytometry and cytotoxicity assays. Using fluorescein-labeled sTyr-PAA (sTyr-PAA-Fluo), the binding of sTyr-PAA to cell surfaces was also investigated. RESULTS: Of all tested compounds, sTyr-PAA was the most effective substance in inhibiting all three pathways of complement activation. Its capacity to inhibit the coagulation cascade was significantly reduced as compared with DXS. sTyr-PAA also dose-dependently inhibited deposition of human complement on pig cells and this inhibition correlated with the binding of sTyr-PAA to the cells. Moreover, we were able to demonstrate that sTyr-PAA binds preferentially and dose-dependently to damaged EC. CONCLUSIONS: We could show that sTyr-PAA acts as an EC-protectant by binding to the cells and protecting them from complement-mediated damage. It has less effect on the coagulation system than DXS and may therefore have potential for in vivo application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: The inflammatory response to an invading pathogen in sepsis leads to complex alterations in hemostasis by dysregulation of procoagulant and anticoagulant factors. Recent treatment options to correct these abnormalities in patients with sepsis and organ dysfunction have yielded conflicting results. Using thromboelastometry (ROTEM(R)), we assessed the course of hemostatic alterations in patients with sepsis and related these alterations to the severity of organ dysfunction. METHODS: This prospective cohort study included 30 consecutive critically ill patients with sepsis admitted to a 30-bed multidisciplinary intensive care unit (ICU). Hemostasis was analyzed with routine clotting tests as well as thromboelastometry every 12 hours for the first 48 hours, and at discharge from the ICU. Organ dysfunction was quantified using the Sequential Organ Failure Assessment (SOFA) score. RESULTS: Simplified Acute Physiology Score II and SOFA scores at ICU admission were 52 +/- 15 and 9 +/- 4, respectively. During the ICU stay the clotting time decreased from 65 +/- 8 seconds to 57 +/- 5 seconds (P = 0.021) and clot formation time (CFT) from 97 +/- 63 seconds to 63 +/- 31 seconds (P = 0.017), whereas maximal clot firmness (MCF) increased from 62 +/- 11 mm to 67 +/- 9 mm (P = 0.035). Classification by SOFA score revealed that CFT was slower (P = 0.017) and MCF weaker (P = 0.005) in patients with more severe organ failure (SOFA >or= 10, CFT 125 +/- 76 seconds, and MCF 57 +/- 11 mm) as compared with patients who had lower SOFA scores (SOFA <10, CFT 69 +/- 27, and MCF 68 +/- 8). Along with increasing coagulation factor activity, the initially increased International Normalized Ratio (INR) and prolonged activated partial thromboplastin time (aPTT) corrected over time. CONCLUSIONS: Key variables of ROTEM(R) remained within the reference ranges during the phase of critical illness in this cohort of patients with severe sepsis and septic shock without bleeding complications. Improved organ dysfunction upon discharge from the ICU was associated with shortened coagulation time, accelerated clot formation, and increased firmness of the formed blood clot when compared with values on admission. With increased severity of illness, changes of ROTEM(R) variables were more pronounced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Stress-related hypercoagulability might link job stress with atherosclerosis. PURPOSE: This paper aims to study whether overcommitment, effort-reward imbalance, and the overcommitment by effort-reward imbalance interaction relate to an exaggerated procoagulant stress response. METHODS: We assessed job stress in 52 healthy teachers (49 +/- 8 years, 63% women) at study entry and, after a mean follow-up of 21 +/- 4 months, when they underwent an acute psychosocial stressor and had coagulation measures determined in plasma. In order to increase the reliability of job stress measures, entry and follow-up scores of overcommitment and of effort-reward imbalance were added up to total scores. RESULTS: During recovery from stress, elevated overcommitment correlated with D-dimer increase and with smaller fibrinogen decrease. In contrast, overcommitment was not associated with coagulation changes from pre-stress to immediately post-stress. Effort-reward imbalance and the interaction between overcommitment and effort-reward imbalance did not correlate with stress-induced changes in coagulation measures. CONCLUSIONS: Overcommitment predicted acute stress-induced hypercoagulability, particularly during the recovery period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Acute psychosocial stress accelerates blood coagulation and elicits hemoconcentration which mechanisms are implicated in acute coronary thrombotic events. We investigated the extent to which the change in prothrombotic measures with acute stress reflects hemoconcentration and genuine activation of coagulation. MATERIAL AND METHODS: Twenty-one middle-aged healthy men underwent three sessions of a combined speech and mental arithmetic task with one-week intervals. Coagulation and plasma volume were assessed at baseline, immediately post-stress, and 45 min post-stress at sessions one and three. Measures of both visits were aggregated to enhance robustness of individual biological stress responses. Changes in eight coagulation measures with and without adjustment for simultaneous plasma volume shift were compared. RESULTS: From baseline to immediately post-stress, unadjusted levels of fibrinogen (p=0.028), clotting factor VII activity (FVII:C) (p=0.001), FVIII:C (p<0.001), FXII:C (p<0.001), and von Willebrand factor (VWF) (p=0.008) all increased. Taking into account hemoconcentration, fibrinogen (p=0.020) and FVII:C levels (p=0.001) decreased, activated partial prothrombin time (APPT) shortened (p<0.001) and prothrombin time (PT) was prolonged (p<0.001). Between baseline and 45 min post-stress, unadjusted (p=0.050) and adjusted (p=0.001) FVIII:C levels increased, adjusted APTT was prolonged (p=0.017), and adjusted PT was shortened (p=0.033). D-dimer levels did not significantly change over time. CONCLUSIONS: Adjustment for stress-hemoconcentration altered the course of unadjusted levels of several prothrombotic factors. After adjustment for hemoconcentration, APPT was shortened immediately post-stress, whereas 45 min post-stress, FVIII:C was increased and PT was shortened. Procoagulant changes to acute stress may reflect both hemoconcentration and genuine activation of coagulation molecules and pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for the culturing and propagation of ovine bone marrow-derived macrophages (BMM) in vitro is described. Bone marrow cells from sterna of freshly slaughtered sheep were cultured in hydrophobic (teflon foil) bags in the presence of high serum concentrations (20% autologous serum and 20% fetal calf serum). During an 18 day culture period in the absence of added conditioned medium, and without medium change, a strong enrichment of mononuclear phagocytes was achieved. Whereas the number of macrophages increased four to fivefold during this time, granulocytes, lymphoid cells, stem cells and undifferentiated progenitor cells were reduced to less than 3% of their numbers at Day 0. This resulted in BMM populations of 94 +/- 3% purity. These cells had morphological and histochemical characteristics of differentiated macrophages, and they performed functions similar to those of non-activated, unprimed human monocyte-derived macrophages. Thus, they avidly ingested erythrocytes coated with IgG of heterologous or homologous origin. They expressed a modest level of procoagulant activity, but upon triggering with lipopolysaccharide (LPS), a marked increase in cell-associated procoagulant activity was observed. LPS triggering promoted the secretion of interleukin-1, as evidenced by measurement of murine thymocyte costimulatory activity, and transforming growth factor-beta. Using the mouse L929 cell cytotoxicity assay as an indication of tumor necrosis factor (TNF) activity, no TNF activity was detected in the same supernatants, a result possibly due to species restriction. BMM generated low levels of O2- upon triggering with phorbol 12-myristate 13-acetate (PMA). On the other hand, no O2- production was observed upon stimulation with zymosan opsonized with ovine or human serum. Using luminol-enhanced chemiluminescence (CL) as a more sensitive indicator of an oxidative burst, both PMA or zymosan were able to trigger CL, but the response was subject to partial inhibition by sodium azide, an inhibitor of myeloperoxidase. This points to non-macrophage cells contributing also to the CL response, and is consistent with the view that unprimed BMM elicit a low oxidative burst upon triggering with strong inducers of a burst. Our functional characterization now allows us to apply priming and activation protocols and to relate their effect to functional alterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Dysregulation of the coagulation system due to inflammatory responses and cross-species molecular incompatibilities represents a major obstacle to successful xenotransplantation. We hypothesized that complement inhibition mediated by transgenic expression of human CD46 in pigs might also regulate the coagulation and fibrinolysis cascades and tested this in ex vivo human-to-pig xenoperfusions. METHODS Forelimbs of wild-type and hCD46/HLA-E double transgenic pigs were ex vivo xenoperfused for 12 hours with whole heparinized human blood. Muscle biopsies were stained for galactose-α1,3-galactose, immunoglobulin M, immunoglobulin G, complement, fibrin, tissue factor, fibrinogen-like protein 2, tissue plasminogen activator (tPA), and plasminogen activator inhibitor (PAI)-1. The PAI-1/tPA complexes, D-dimers, and prothrombin fragment F1 + 2 were measured in plasma samples after ex vivo xenoperfusion. RESULTS No differences of galactose expression or deposition of immunoglobulin M and immunoglobulin G were found in xenoperfused tissues of wild type and transgenic limbs. In contrast, significantly lower deposition of C5b-9 (P < 0.0001), fibrin (P = 0.009), and diminished expression of tissue factor (P = 0.005) and fibrinogen-like protein 2 (P = 0.028) were found in xenoperfused tissues of transgenic limbs. Levels of prothrombin fragment F1 + 2 (P = 0.031) and D-dimers (P = 0.044) were significantly lower in plasma samples obtained from transgenic as compared to wild-type pig limb perfusions. The expression of the fibrinolytic marker tPA was significantly higher (P = 0.009), whereas PAI-1 expression (P = 0.022) and PAI-1/tPA complexes in plasma (P = 0.015) were lower after transgenic xenoperfusion as compared to wild-type xenoperfusions. CONCLUSIONS In this human-to-pig xenoperfusion model, complement inhibition by transgenic hCD46 expression led to a significant inhibition of procoagulant and antifibrinolytic pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Cell-derived plasma microparticles (<1.5 μm) originating from various cell types have the potential to regulate thrombogenesis and inflammatory responses. The aim of this study was to test the hypothesis that microparticles generated during hepatic surgery co-regulate postoperative procoagulant and proinflammatory events. METHODS In 30 patients undergoing liver resection, plasma microparticles were isolated, quantitated, and characterized as endothelial (CD31+, CD41-), platelet (CD41+), or leukocyte (CD11b+) origin by flow cytometry and their procoagulant and proinflammatory activity was measured by immunoassays. RESULTS During liver resection, the total numbers of microparticles increased with significantly more Annexin V-positive, endothelial and platelet-derived microparticles following extended hepatectomy compared to standard and minor liver resections. After liver resection, microparticle tissue factor and procoagulant activity increased along with overall coagulation as assessed by thrombelastography. Levels of leukocyte-derived microparticles specifically increased in patients with systemic inflammation as assessed by C-reactive protein but are independent of the extent of liver resection. CONCLUSIONS Endothelial and platelet-derived microparticles are specifically elevated during liver resection, accompanied by increased procoagulant activity. Leukocyte-derived microparticles are a potential marker for systemic inflammation. Plasma microparticles may represent a specific response to surgical stress and may be an important mediator of postoperative coagulation and inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To evaluate horses with atrial fibrillation for hypercoagulability; plasma D-dimer concentrations, as a marker of a procoagulant state; and a relationship between coagulation profile results and duration of atrial fibrillation or presence of structural heart disease. DESIGN Case-control study. ANIMALS Plasma samples from 42 horses (25 with atrial fibrillation and 17 without cardiovascular or systemic disease [control group]). PROCEDURES Results of hematologic tests (ie, plasma fibrinogen and D-dimer concentrations, prothrombin and activated partial thromboplastin times, and antithrombin activity) in horses were recorded to assess coagulation and fibrinolysis. Historical and clinical variables, as associated with a hypercoagulable state in other species, were also recorded. RESULTS Horses with atrial fibrillation and control horses lacked clinical signs of hypercoagulation or thromboembolism. Compared with control horses, horses with atrial fibrillation had significantly lower antithrombin activity. No significant differences in plasma fibrinogen and D-dimer concentrations and prothrombin and activated partial thromboplastin times existed between horse groups. In horses with atrial fibrillation versus control horses, a significantly larger proportion had an abnormal plasma D-dimer concentration (10/25 vs 2/17), test results indicative of subclinical activated coagulation (18/25 vs 6/17), or abnormal coagulation test results (25/121 vs 7/85), respectively. CONCLUSIONS AND CLINICAL RELEVANCE Horses with atrial fibrillation did not have clinical evidence of a hypercoagulable state, but a higher proportion of horses with atrial fibrillation, compared with control horses, did have subclinical activated coagulation on the basis of standard coagulation test results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A critical link between hemostatic factors and atherosclerosis has been inferred from a variety of indirect observations, including the expression of procoagulant and fibrinolytic factors within atherosclerotic vessels, the presence of fibrin in intimal lesions, and the cellular infiltration of mural thrombi leading to their incorporation into developing plaques. To directly examine the role of the key fibrinolytic factor, plasminogen, in atherogenesis, plasminogen-deficient mice were crossed to hypercholesterolemic, apolipoprotein E-deficient mice predisposed to atherosclerosis. We report that the loss of plasminogen greatly accelerates the formation of intimal lesions in apolipoprotein E-deficient animals, whereas plasminogen deficiency alone does not cause appreciable atherosclerosis. These studies provide direct evidence that circulating hemostatic factors strongly influence vessel wall disease in the context of a disorder in lipid metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One crucial role of endothelium is to keep the innermost surface of a blood vessel antithrombotic. However, the endothelium also expresses prothrombotic molecules in response to various stimuli. The balance between the antithrombotic and prothrombotic nature of the endothelium is lost under certain conditions. During atherosclerosis, the attachment of platelets to the vessel surface has been suggested to promote the proliferation of smooth muscle cells and intimal thickening as well as to affect the prognosis of the disease directly through myocardial infarction and stroke. Dysfunctional endothelium, which is often a result of the action of oxidized low-density lipoprotein (OxLDL), tends to be more procoagulant and adhesive to platelets. Herein, we sought the possibility that the endothelial lectin-like OxLDL receptor-1 (LOX-1) is involved in the platelet–endothelium interaction and hence directly in endothelial dysfunction. LOX-1 indeed worked as an adhesion molecule for platelets. The binding of platelets was inhibited by a phosphatidylserine-binding protein, annexin V, and enhanced by agonists for platelets. These results suggest that negative phospholipids exposed on activation on the surface of platelets are the epitopes for LOX-1. Notably, the binding of platelets to LOX-1 enhanced the release of endothelin-1 from endothelial cells, supporting the induction of endothelial dysfunction, which would, in turn, promote the atherogenic process. LOX-1 may initiate and promote atherosclerosis, binding not only OxLDL but also platelets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To examine the hypothesis that surface P-selectin-positive (degranulated) platelets are rapidly cleared from the circulation, we developed novel methods for tracking of platelets and measurement of platelet function in vivo. Washed platelets prepared from nonhuman primates (baboons) were labeled with PKH2 (a lipophilic fluorescent dye), thrombin-activated, washed, and reinfused into the same baboons. Three-color whole blood flow cytometry was used to simultaneously (i) identify platelets with a mAb directed against glycoprotein (GP)IIb-IIIa (integrin alpha 11b beta 3), (ii) distinguish infused platelets by their PKH2 fluorescence, and (iii) analyze platelet function with mAbs. Two hours after infusion of autologous thrombin-activated platelets (P-selectin-positive, PKH2-labeled), 95 +/- 1% (mean +/- SEM, n = 5) of the circulating PKH2-labeled platelets had become P-selectin-negative. Compared with platelets not activated with thrombin preinfusion, the recovery of these circulating PKH2-labeled, P-selectin-negative platelets was similar 24 h after infusion and only slightly less 48 h after infusion. The loss of platelet surface P-selectin was fully accounted for by a 67.1 +/- 16.7 ng/ml increase in the plasma concentration of soluble P-selectin. The circulating PKH2-labeled, P-selectin-negative platelets were still able to function in vivo, as determined by their (i) participation in platelet aggregates emerging from a bleeding time wound, (ii) binding to Dacron in an arteriovenous shunt, (iii) binding of mAb PAC1 (directed against the fibrinogen binding site on GPIIb-IIIa), and (iv) generation of procoagulant platelet-derived microparticles. In summary, (i) circulating degranulated platelets rapidly lose surface P-selectin to the plasma pool, but continue to circulate and function; and (ii) we have developed novel three-color whole blood flow cytometric methods for tracking of platelets and measurement of platelet function in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antiphospholipid antibodies, including anticardiolipin antibodies (ACA), are strongly associated with recurrent thrombosis in patients with the antiphospholipid syndrome (APS). To date, reports about the binding specificities of ACA and their role(s) in causing and/or sustaining thrombosis in APS are conflicting and controversial. The plasmas of patients with APS, usually containing a mixture of autoantibodies, vary in binding specificity for different phospholipids/cofactors and vary in in vitro lupus anticoagulant activity. Although in vivo assays that allow assessment of the pathogenic procoagulant activity of patient autoantibodies have recently been developed, the complex nature of the mixed species prevented determination of the particular species responsible for in vivo thrombosis. We have generated two human IgG monoclonal ACA from an APS patient with recurrent thrombosis. Both bound to cardiolipin in the presence of 10% bovine serum, but not in its absence, and both were reactive against phosphatidic acid, but were nonreactive against purified human beta-2 glycoprotein 1, DNA, heparan sulfate, or four other test antigens. Both monoclonal autoantibodies lacked lupus anticoagulant activity and did not inhibit prothrombinase activity. Remarkably, one of the monoclonal antibodies has thrombogenic properties when tested in an in vivo mouse model. This finding provides the first direct evidence that a particular antiphospholipid antibody specificity may contribute to in vivo thrombosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Residues energetically linked to the allosteric transition of thrombin from its anticoagulant slow form to the procoagulant fast form have been identified by site-directed mutagenesis. The energetics of recognition by the two forms of the enzyme were probed by using a synthetic chromogenic substrate, fibrinogen, and hirudin. The thrombin residues E39, W60d, E192, D221, and D222 are linked to the slow-->fast transition and are part of an "allosteric core" through which events originating at the Na+ binding loop propagate to other regions of the enzyme. The thrombin residues Y76, W96, W148, and R173 lie at the periphery of the allosteric core, affect recognition of fibrinogen and hirudin to the same extent in both forms, and are not linked to the slow-->fast transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platelet-derived microparticles that are produced during platelet activation are capable of adhesion and aggregation. Endothelial trauma that occurs during percutaneous transluminal coronary angioplasty (PTCA) may support platelet-derived microparticle adhesion and contribute to development of restenosis. We have previously reported an increase in platelet-derived microparticles in peripheral arterial blood with angioplasty. This finding raised concerns regarding the role of platelet-derived microparticles in restenosis, and therefore the aim of this study was to monitor levels in the coronary circulation. The study population consisted of 19 angioplasty patients. Paired coronary artery and sinus samples were obtained following heparinization, following contrast administration, and subsequent to all vessel manipulation. Platelet-derived microparticles were identified with an anti-CD61 (glycoprotein IIIa) fluorescence-conjugated antibody using flow cytometry. There was a significant decrease in arterial platelet-derived microparticles from heparinization to contrast administration (P=0.001), followed by a significant increase to the end of angioplasty (P=0.004). However, there was no significant change throughout the venous samples. These results indicate that the higher level of platelet-derived microparticles after angioplasty in arterial blood remained in the coronary circulation. Interestingly, levels of thrombin-antithrombin complexes did not rise during PTCA. This may have implications for the development of coronary restenosis post-PTCA, although this remains to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Venom from the Australian elapid Pseudonaja textilis (Common or Eastern Brown snake), is the second most toxic snake venom known and is the most common cause of death from snake bite in Australia. This venom is known to contain a prothrombin activator complex, serine proteinase inhibitors, various phospholipase A(2)s, and pre-and postsynaptic neurotoxins. In this study, we performed a proteomic identification of the venom using two- dimensional gel electrophoresis, mass spectrometry, and de novo peptide sequencing. We identified most of the venom proteins including proteins previously not known to be present in the venom. In addition, we used immunoblotting and post-translational modification-specific enzyme stains and antibodies that reveal the complexity and regional diversity of the venom. Modifications observed include phosphorylation, gamma-carboxylation, and glycosylation. Glycoproteins were further characterized by enzymatic deglycosylation and by lectin binding specificity. The venom contains an abundance of glycoproteins with N-linked sugars that include glucose/mannose, N-acetylgalactosamine, N-acetylglucosamine, and sialic acids. Additionally there are multiple isoforms of mammalian coagulation factors that comprise a significant proportion of the venom. Indeed two of the identified proteins, a procoagulant and a plasmin inhibitor, are currently in development as human therapeutic agents.