986 resultados para Problem formulation
                                
Resumo:
In this paper a p--median--like model is formulated to address theissue of locating new facilities when there is uncertainty. Severalpossible future scenarios with respect to demand and/or the travel times/distanceparameters are presented. The planner will want a strategy of positioning thatwill do as ``well as possible'' over the future scenarios. This paper presents a discrete location model formulation to address this P--Medianproblem under uncertainty. The model is applied to the location of firestations in Barcelona.
                                
Resumo:
Previous covering models for emergency service consider all the calls to be of the sameimportance and impose the same waiting time constraints independently of the service's priority.This type of constraint is clearly inappropriate in many contexts. For example, in urban medicalemergency services, calls that involve danger to human life deserve higher priority over calls formore routine incidents. A realistic model in such a context should allow prioritizing the calls forservice.In this paper a covering model which considers different priority levels is formulated andsolved. The model heritages its formulation from previous research on Maximum CoverageModels and incorporates results from Queuing Theory, in particular Priority Queuing. Theadditional complexity incorporated in the model justifies the use of a heuristic procedure.
                                
Resumo:
The Drivers Scheduling Problem (DSP) consists of selecting a set of duties for vehicle drivers, for example buses, trains, plane or boat drivers or pilots, for the transportation of passengers or goods. This is a complex problem because it involves several constraints related to labour and company rules and can also present different evaluation criteria and objectives. Being able to develop an adequate model for this problem that can represent the real problem as close as possible is an important research area.The main objective of this research work is to present new mathematical models to the DSP problem that represent all the complexity of the drivers scheduling problem, and also demonstrate that the solutions of these models can be easily implemented in real situations. This issue has been recognized by several authors and as important problem in Public Transportation. The most well-known and general formulation for the DSP is a Set Partition/Set Covering Model (SPP/SCP). However, to a large extend these models simplify some of the specific business aspects and issues of real problems. This makes it difficult to use these models as automatic planning systems because the schedules obtained must be modified manually to be implemented in real situations. Based on extensive passenger transportation experience in bus companies in Portugal, we propose new alternative models to formulate the DSP problem. These models are also based on Set Partitioning/Covering Models; however, they take into account the bus operator issues and the perspective opinions and environment of the user.We follow the steps of the Operations Research Methodology which consist of: Identify the Problem; Understand the System; Formulate a Mathematical Model; Verify the Model; Select the Best Alternative; Present the Results of theAnalysis and Implement and Evaluate. All the processes are done with close participation and involvement of the final users from different transportation companies. The planner s opinion and main criticisms are used to improve the proposed model in a continuous enrichment process. The final objective is to have a model that can be incorporated into an information system to be used as an automatic tool to produce driver schedules. Therefore, the criteria for evaluating the models is the capacity to generate real and useful schedules that can be implemented without many manual adjustments or modifications. We have considered the following as measures of the quality of the model: simplicity, solution quality and applicability. We tested the alternative models with a set of real data obtained from several different transportation companies and analyzed the optimal schedules obtained with respect to the applicability of the solution to the real situation. To do this, the schedules were analyzed by the planners to determine their quality and applicability. The main result of this work is the proposition of new mathematical models for the DSP that better represent the realities of the passenger transportation operators and lead to better schedules that can be implemented directly in real situations.
                                
Resumo:
We present new metaheuristics for solving real crew scheduling problemsin a public transportation bus company. Since the crews of thesecompanies are drivers, we will designate the problem by the bus-driverscheduling problem. Crew scheduling problems are well known and severalmathematical programming based techniques have been proposed to solvethem, in particular using the set-covering formulation. However, inpractice, there exists the need for improvement in terms of computationalefficiency and capacity of solving large-scale instances. Moreover, thereal bus-driver scheduling problems that we consider can present variantaspects of the set covering, as for example a different objectivefunction, implying that alternative solutions methods have to bedeveloped. We propose metaheuristics based on the following approaches:GRASP (greedy randomized adaptive search procedure), tabu search andgenetic algorithms. These metaheuristics also present some innovationfeatures based on and genetic algorithms. These metaheuristics alsopresent some innovation features based on the structure of the crewscheduling problem, that guide the search efficiently and able them tofind good solutions. Some of these new features can also be applied inthe development of heuristics to other combinatorial optimizationproblems. A summary of computational results with real-data problems ispresented.
                                
Resumo:
We discuss reality conditions and the relation between spacetime diffeomorphisms and gauge transformations in Ashtekars complex formulation of general relativity. We produce a general theoretical framework for the stabilization algorithm for the reality conditions, which is different from Diracs method of stabilization of constraints. We solve the problem of the projectability of the diffeomorphism transformations from configuration-velocity space to phase space, linking them to the reality conditions. We construct the complete set of canonical generators of the gauge group in the phase space which includes all the gauge variables. This result proves that the canonical formalism has all the gauge structure of the Lagrangian theory, including the time diffeomorphisms.
                                
Resumo:
In the Hamiltonian formulation of predictive relativistic systems, the canonical coordinates cannot be the physical positions. The relation between them is given by the individuality differential equations. However, due to the arbitrariness in the choice of Cauchy data, there is a wide family of solutions for these equations. In general, those solutions do not satisfy the condition of constancy of velocities moduli, and therefore we have to reparametrize the world lines into the proper time. We derive here a condition on the Cauchy data for the individuality equations which ensures the constancy of the velocities moduli and makes the reparametrization unnecessary.
                                
Resumo:
The multiscale finite-volume (MSFV) method has been derived to efficiently solve large problems with spatially varying coefficients. The fine-scale problem is subdivided into local problems that can be solved separately and are coupled by a global problem. This algorithm, in consequence, shares some characteristics with two-level domain decomposition (DD) methods. However, the MSFV algorithm is different in that it incorporates a flux reconstruction step, which delivers a fine-scale mass conservative flux field without the need for iterating. This is achieved by the use of two overlapping coarse grids. The recently introduced correction function allows for a consistent handling of source terms, which makes the MSFV method a flexible algorithm that is applicable to a wide spectrum of problems. It is demonstrated that the MSFV operator, used to compute an approximate pressure solution, can be equivalently constructed by writing the Schur complement with a tangential approximation of a single-cell overlapping grid and incorporation of appropriate coarse-scale mass-balance equations.
                                
Resumo:
Over 70% of the total costs of an end product are consequences of decisions that are made during the design process. A search for optimal cross-sections will often have only a marginal effect on the amount of material used if the geometry of a structure is fixed and if the cross-sectional characteristics of its elements are property designed by conventional methods. In recent years, optimalgeometry has become a central area of research in the automated design of structures. It is generally accepted that no single optimisation algorithm is suitable for all engineering design problems. An appropriate algorithm, therefore, mustbe selected individually for each optimisation situation. Modelling is the mosttime consuming phase in the optimisation of steel and metal structures. In thisresearch, the goal was to develop a method and computer program, which reduces the modelling and optimisation time for structural design. The program needed anoptimisation algorithm that is suitable for various engineering design problems. Because Finite Element modelling is commonly used in the design of steel and metal structures, the interaction between a finite element tool and optimisation tool needed a practical solution. The developed method and computer programs were tested with standard optimisation tests and practical design optimisation cases. Three generations of computer programs are developed. The programs combine anoptimisation problem modelling tool and FE-modelling program using three alternate methdos. The modelling and optimisation was demonstrated in the design of a new boom construction and steel structures of flat and ridge roofs. This thesis demonstrates that the most time consuming modelling time is significantly reduced. Modelling errors are reduced and the results are more reliable. A new selection rule for the evolution algorithm, which eliminates the need for constraint weight factors is tested with optimisation cases of the steel structures that include hundreds of constraints. It is seen that the tested algorithm can be used nearly as a black box without parameter settings and penalty factors of the constraints.
                                
Resumo:
Osteoporotic fractures are a public health problem and their incidence and subsequent economic and social costs are expected to rise in the next future. Different drugs have been developed to reduce osteoporosis and the risk of osteoporotic fractures, and among them, antiresorptive agents, and in particular oral alendronate, are the most widely utilized. However, one of the most common problems with antiresorptive drugs is poor adherence to treatment, which is associated with a high fracture incidence and with an increase in hospitalization costs. One of the main reasons of poor adherence to these treatments is the occurrence of adverse events, mainly at gastrointestinal (GI) level, including dyspepsia, dysphagia, and esophageal ulcers. In light of these considerations the aim of this paper is to perform a literature review to show the pathophysiologic bases of GI alendronate-induced adverse events and how new bisphosphonate formulations like effervescent alendronate can improve compliance and persistence to treatment and decrease the fracture rate incidence in osteoporotic patients.
                                
Resumo:
The focus of this dissertation is to develop finite elements based on the absolute nodal coordinate formulation. The absolute nodal coordinate formulation is a nonlinear finite element formulation, which is introduced for special requirements in the field of flexible multibody dynamics. In this formulation, a special definition for the rotation of elements is employed to ensure the formulation will not suffer from singularities due to large rotations. The absolute nodal coordinate formulation can be used for analyzing the dynamics of beam, plate and shell type structures. The improvements of the formulation are mainly concentrated towards the description of transverse shear deformation. Additionally, the formulation is verified by using conventional iso-parametric solid finite element and geometrically exact beam theory. Previous claims about especially high eigenfrequencies are studied by introducing beam elements based on the absolute nodal coordinate formulation in the framework of the large rotation vector approach. Additionally, the same high eigenfrequency problem is studied by using constraints for transverse deformation. It was determined that the improvements for shear deformation in the transverse direction lead to clear improvements in computational efficiency. This was especially true when comparative stress must be defined, for example when using elasto-plastic material. Furthermore, the developed plate element can be used to avoid certain numerical problems, such as shear and curvature lockings. In addition, it was shown that when compared to conventional solid elements, or elements based on nonlinear beam theory, elements based on the absolute nodal coordinate formulation do not lead to an especially stiff system for the equations of motion.
                                
Resumo:
This work presents a formulation of the contact with friction between elastic bodies. This is a non linear problem due to unilateral constraints (inter-penetration of bodies) and friction. The solution of this problem can be found using optimization concepts, modelling the problem as a constrained minimization problem. The Finite Element Method is used to construct approximation spaces. The minimization problem has the total potential energy of the elastic bodies as the objective function, the non-inter-penetration conditions are represented by inequality constraints, and equality constraints are used to deal with the friction. Due to the presence of two friction conditions (stick and slip), specific equality constraints are present or not according to the current condition. Since the Coulomb friction condition depends on the normal and tangential contact stresses related to the constraints of the problem, it is devised a conditional dependent constrained minimization problem. An Augmented Lagrangian Method for constrained minimization is employed to solve this problem. This method, when applied to a contact problem, presents Lagrange Multipliers which have the physical meaning of contact forces. This fact allows to check the friction condition at each iteration. These concepts make possible to devise a computational scheme which lead to good numerical results.
                                
Resumo:
The mathematical model for two-dimensional unsteady sonic flow, based on the classical diffusion equation with imaginary coefficient, is presented and discussed. The main purpose is to develop a rigorous formulation in order to bring into light the correspondence between the sonic, supersonic and subsonic panel method theory. Source and doublet integrals are obtained and Laplace transformation demonstrates that, in fact, the source integral is the solution of the doublet integral equation. It is shown that the doublet-only formulation reduces to a Volterra integral equation of the first kind and a numerical method is proposed in order to solve it. To the authors' knowledge this is the first reported solution to the unsteady sonic thin airfoil problem through the use of doublet singularities. Comparisons with the source-only formulation are shown for the problem of a flat plate in combined harmonic heaving and pitching motion.
                                
Resumo:
Le problème de localisation-routage avec capacités (PLRC) apparaît comme un problème clé dans la conception de réseaux de distribution de marchandises. Il généralisele problème de localisation avec capacités (PLC) ainsi que le problème de tournées de véhicules à multiples dépôts (PTVMD), le premier en ajoutant des décisions liées au routage et le deuxième en ajoutant des décisions liées à la localisation des dépôts. Dans cette thèse on dévelope des outils pour résoudre le PLRC à l’aide de la programmation mathématique. Dans le chapitre 3, on introduit trois nouveaux modèles pour le PLRC basés sur des flots de véhicules et des flots de commodités, et on montre comment ceux-ci dominent, en termes de la qualité de la borne inférieure, la formulation originale à deux indices [19]. Des nouvelles inégalités valides ont été dévelopées et ajoutées aux modèles, de même que des inégalités connues. De nouveaux algorithmes de séparation ont aussi été dévelopés qui dans la plupart de cas généralisent ceux trouvés dans la litterature. Les résultats numériques montrent que ces modèles de flot sont en fait utiles pour résoudre des instances de petite à moyenne taille. Dans le chapitre 4, on présente une nouvelle méthode de génération de colonnes basée sur une formulation de partition d’ensemble. Le sous-problème consiste en un problème de plus court chemin avec capacités (PCCC). En particulier, on utilise une relaxation de ce problème dans laquelle il est possible de produire des routes avec des cycles de longueur trois ou plus. Ceci est complété par des nouvelles coupes qui permettent de réduire encore davantage le saut d’intégralité en même temps que de défavoriser l’apparition de cycles dans les routes. Ces résultats suggèrent que cette méthode fournit la meilleure méthode exacte pour le PLRC. Dans le chapitre 5, on introduit une nouvelle méthode heuristique pour le PLRC. Premièrement, on démarre une méthode randomisée de type GRASP pour trouver un premier ensemble de solutions de bonne qualité. Les solutions de cet ensemble sont alors combinées de façon à les améliorer. Finalement, on démarre une méthode de type détruir et réparer basée sur la résolution d’un nouveau modèle de localisation et réaffectation qui généralise le problème de réaffectaction [48].
                                
Resumo:
This paper presents Reinforcement Learning (RL) approaches to Economic Dispatch problem. In this paper, formulation of Economic Dispatch as a multi stage decision making problem is carried out, then two variants of RL algorithms are presented. A third algorithm which takes into consideration the transmission losses is also explained. Efficiency and flexibility of the proposed algorithms are demonstrated through different representative systems: a three generator system with given generation cost table, IEEE 30 bus system with quadratic cost functions, 10 generator system having piecewise quadratic cost functions and a 20 generator system considering transmission losses. A comparison of the computation times of different algorithms is also carried out.
                                
Resumo:
We discuss a formulation for active example selection for function learning problems. This formulation is obtained by adapting Fedorov's optimal experiment design to the learning problem. We specifically show how to analytically derive example selection algorithms for certain well defined function classes. We then explore the behavior and sample complexity of such active learning algorithms. Finally, we view object detection as a special case of function learning and show how our formulation reduces to a useful heuristic to choose examples to reduce the generalization error.
 
                    