990 resultados para Probabilistic assessment
Resumo:
La mejora de la calidad del aire es una tarea eminentemente interdisciplinaria. Dada la gran variedad de ciencias y partes involucradas, dicha mejora requiere de herramientas de evaluación simples y completamente integradas. La modelización para la evaluación integrada (integrated assessment modeling) ha demostrado ser una solución adecuada para la descripción de los sistemas de contaminación atmosférica puesto que considera cada una de las etapas involucradas: emisiones, química y dispersión atmosférica, impactos ambientales asociados y potencial de disminución. Varios modelos de evaluación integrada ya están disponibles a escala continental, cubriendo cada una de las etapas antesmencionadas, siendo el modelo GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) el más reconocido y usado en el contexto europeo de toma de decisiones medioambientales. Sin embargo, el manejo de la calidad del aire a escala nacional/regional dentro del marco de la evaluación integrada es deseable. Esto sin embargo, no se lleva a cabo de manera satisfactoria con modelos a escala europea debido a la falta de resolución espacial o de detalle en los datos auxiliares, principalmente los inventarios de emisión y los patrones meteorológicos, entre otros. El objetivo de esta tesis es presentar los desarrollos en el diseño y aplicación de un modelo de evaluación integrada especialmente concebido para España y Portugal. El modelo AERIS (Atmospheric Evaluation and Research Integrated system for Spain) es capaz de cuantificar perfiles de concentración para varios contaminantes (NO2, SO2, PM10, PM2,5, NH3 y O3), el depósito atmosférico de especies de azufre y nitrógeno así como sus impactos en cultivos, vegetación, ecosistemas y salud como respuesta a cambios porcentuales en las emisiones de sectores relevantes. La versión actual de AERIS considera 20 sectores de emisión, ya sea equivalentes a sectores individuales SNAP o macrosectores, cuya contribución a los niveles de calidad del aire, depósito e impactos han sido modelados a través de matrices fuentereceptor (SRMs). Estas matrices son constantes de proporcionalidad que relacionan cambios en emisiones con diferentes indicadores de calidad del aire y han sido obtenidas a través de parametrizaciones estadísticas de un modelo de calidad del aire (AQM). Para el caso concreto de AERIS, su modelo de calidad del aire “de origen” consistió en el modelo WRF para la meteorología y en el modelo CMAQ para los procesos químico-atmosféricos. La cuantificación del depósito atmosférico, de los impactos en ecosistemas, cultivos, vegetación y salud humana se ha realizado siguiendo las metodologías estándar establecidas bajo los marcos internacionales de negociación, tales como CLRTAP. La estructura de programación está basada en MATLAB®, permitiendo gran compatibilidad con software típico de escritorio comoMicrosoft Excel® o ArcGIS®. En relación con los niveles de calidad del aire, AERIS es capaz de proveer datos de media anual y media mensual, así como el 19o valor horario más alto paraNO2, el 25o valor horario y el 4o valor diario más altos para SO2, el 36o valor diario más alto para PM10, el 26o valor octohorario más alto, SOMO35 y AOT40 para O3. En relación al depósito atmosférico, el depósito acumulado anual por unidad de area de especies de nitrógeno oxidado y reducido al igual que de azufre pueden ser determinados. Cuando los valores anteriormente mencionados se relacionan con características del dominio modelado tales como uso de suelo, cubiertas vegetales y forestales, censos poblacionales o estudios epidemiológicos, un gran número de impactos puede ser calculado. Centrándose en los impactos a ecosistemas y suelos, AERIS es capaz de estimar las superaciones de cargas críticas y las superaciones medias acumuladas para especies de nitrógeno y azufre. Los daños a bosques se calculan como una superación de los niveles críticos de NO2 y SO2 establecidos. Además, AERIS es capaz de cuantificar daños causados por O3 y SO2 en vid, maíz, patata, arroz, girasol, tabaco, tomate, sandía y trigo. Los impactos en salud humana han sido modelados como consecuencia de la exposición a PM2,5 y O3 y cuantificados como pérdidas en la esperanza de vida estadística e indicadores de mortalidad prematura. La exactitud del modelo de evaluación integrada ha sido contrastada estadísticamente con los resultados obtenidos por el modelo de calidad del aire convencional, exhibiendo en la mayoría de los casos un buen nivel de correspondencia. Debido a que la cuantificación de los impactos no es llevada a cabo directamente por el modelo de calidad del aire, un análisis de credibilidad ha sido realizado mediante la comparación de los resultados de AERIS con los de GAINS para un escenario de emisiones determinado. El análisis reveló un buen nivel de correspondencia en las medias y en las distribuciones probabilísticas de los conjuntos de datos. Las pruebas de verificación que fueron aplicadas a AERIS sugieren que los resultados son suficientemente consistentes para ser considerados como razonables y realistas. En conclusión, la principal motivación para la creación del modelo fue el producir una herramienta confiable y a la vez simple para el soporte de las partes involucradas en la toma de decisiones, de cara a analizar diferentes escenarios “y si” con un bajo coste computacional. La interacción con políticos y otros actores dictó encontrar un compromiso entre la complejidad del modeladomedioambiental con el carácter conciso de las políticas, siendo esto algo que AERIS refleja en sus estructuras conceptual y computacional. Finalmente, cabe decir que AERIS ha sido creado para su uso exclusivo dentro de un marco de evaluación y de ninguna manera debe ser considerado como un sustituto de los modelos de calidad del aire ordinarios. ABSTRACT Improving air quality is an eminently inter-disciplinary task. The wide variety of sciences and stakeholders that are involved call for having simple yet fully-integrated and reliable evaluation tools available. Integrated AssessmentModeling has proved to be a suitable solution for the description of air pollution systems due to the fact that it considers each of the involved stages: emissions, atmospheric chemistry, dispersion, environmental impacts and abatement potentials. Some integrated assessment models are available at European scale that cover each of the before mentioned stages, being the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model the most recognized and widely-used within a European policy-making context. However, addressing air quality at the national/regional scale under an integrated assessment framework is desirable. To do so, European-scale models do not provide enough spatial resolution or detail in their ancillary data sources, mainly emission inventories and local meteorology patterns as well as associated results. The objective of this dissertation is to present the developments in the design and application of an Integrated Assessment Model especially conceived for Spain and Portugal. The Atmospheric Evaluation and Research Integrated system for Spain (AERIS) is able to quantify concentration profiles for several pollutants (NO2, SO2, PM10, PM2.5, NH3 and O3), the atmospheric deposition of sulfur and nitrogen species and their related impacts on crops, vegetation, ecosystems and health as a response to percentual changes in the emissions of relevant sectors. The current version of AERIS considers 20 emission sectors, either corresponding to individual SNAP sectors or macrosectors, whose contribution to air quality levels, deposition and impacts have been modeled through the use of source-receptor matrices (SRMs). Thesematrices are proportionality constants that relate emission changes with different air quality indicators and have been derived through statistical parameterizations of an air qualitymodeling system (AQM). For the concrete case of AERIS, its parent AQM relied on the WRF model for meteorology and on the CMAQ model for atmospheric chemical processes. The quantification of atmospheric deposition, impacts on ecosystems, crops, vegetation and human health has been carried out following the standard methodologies established under international negotiation frameworks such as CLRTAP. The programming structure isMATLAB ® -based, allowing great compatibility with typical software such as Microsoft Excel ® or ArcGIS ® Regarding air quality levels, AERIS is able to provide mean annual andmean monthly concentration values, as well as the indicators established in Directive 2008/50/EC, namely the 19th highest hourly value for NO2, the 25th highest daily value and the 4th highest hourly value for SO2, the 36th highest daily value of PM10, the 26th highest maximum 8-hour daily value, SOMO35 and AOT40 for O3. Regarding atmospheric deposition, the annual accumulated deposition per unit of area of species of oxidized and reduced nitrogen as well as sulfur can be estimated. When relating the before mentioned values with specific characteristics of the modeling domain such as land use, forest and crops covers, population counts and epidemiological studies, a wide array of impacts can be calculated. When focusing on impacts on ecosystems and soils, AERIS is able to estimate critical load exceedances and accumulated average exceedances for nitrogen and sulfur species. Damage on forests is estimated as an exceedance of established critical levels of NO2 and SO2. Additionally, AERIS is able to quantify damage caused by O3 and SO2 on grapes, maize, potato, rice, sunflower, tobacco, tomato, watermelon and wheat. Impacts on human health aremodeled as a consequence of exposure to PM2.5 and O3 and quantified as losses in statistical life expectancy and premature mortality indicators. The accuracy of the IAM has been tested by statistically contrasting the obtained results with those yielded by the conventional AQM, exhibiting in most cases a good agreement level. Due to the fact that impacts cannot be directly produced by the AQM, a credibility analysis was carried out for the outputs of AERIS for a given emission scenario by comparing them through probability tests against the performance of GAINS for the same scenario. This analysis revealed a good correspondence in the mean behavior and the probabilistic distributions of the datasets. The verification tests that were applied to AERIS suggest that results are consistent enough to be credited as reasonable and realistic. In conclusion, the main reason thatmotivated the creation of this model was to produce a reliable yet simple screening tool that would provide decision and policy making support for different “what-if” scenarios at a low computing cost. The interaction with politicians and other stakeholders dictated that reconciling the complexity of modeling with the conciseness of policies should be reflected by AERIS in both, its conceptual and computational structures. It should be noted however, that AERIS has been created under a policy-driven framework and by no means should be considered as a substitute of the ordinary AQM.
Resumo:
How can empirical evidence of adverse effects from exposure to noxious agents, which is often incomplete and uncertain, be used most appropriately to protect human health? We examine several important questions on the best uses of empirical evidence in regulatory risk management decision-making raised by the US Environmental Protection Agency (EPA)'s science-policy concerning uncertainty and variability in human health risk assessment. In our view, the US EPA (and other agencies that have adopted similar views of risk management) can often improve decision-making by decreasing reliance on default values and assumptions, particularly when causation is uncertain. This can be achieved by more fully exploiting decision-theoretic methods and criteria that explicitly account for uncertain, possibly conflicting scientific beliefs and that can be fully studied by advocates and adversaries of a policy choice, in administrative decision-making involving risk assessment. The substitution of decision-theoretic frameworks for default assumption-driven policies also allows stakeholder attitudes toward risk to be incorporated into policy debates, so that the public and risk managers can more explicitly identify the roles of risk-aversion or other attitudes toward risk and uncertainty in policy recommendations. Decision theory provides a sound scientific way explicitly to account for new knowledge and its effects on eventual policy choices. Although these improvements can complicate regulatory analyses, simplifying default assumptions can create substantial costs to society and can prematurely cut off consideration of new scientific insights (e.g., possible beneficial health effects from exposure to sufficiently low 'hormetic' doses of some agents). In many cases, the administrative burden of applying decision-analytic methods is likely to be more than offset by improved effectiveness of regulations in achieving desired goals. Because many foreign jurisdictions adopt US EPA reasoning and methods of risk analysis, it may be especially valuable to incorporate decision-theoretic principles that transcend local differences among jurisdictions.
Resumo:
This thesis explores the process of developing a principled approach for translating a model of mental-health risk expertise into a probabilistic graphical structure. Probabilistic graphical structures can be a combination of graph and probability theory that provide numerous advantages when it comes to the representation of domains involving uncertainty, domains such as the mental health domain. In this thesis the advantages that probabilistic graphical structures offer in representing such domains is built on. The Galatean Risk Screening Tool (GRiST) is a psychological model for mental health risk assessment based on fuzzy sets. In this thesis the knowledge encapsulated in the psychological model was used to develop the structure of the probability graph by exploiting the semantics of the clinical expertise. This thesis describes how a chain graph can be developed from the psychological model to provide a probabilistic evaluation of risk that complements the one generated by GRiST’s clinical expertise by the decomposing of the GRiST knowledge structure in component parts, which were in turned mapped into equivalent probabilistic graphical structures such as Bayesian Belief Nets and Markov Random Fields to produce a composite chain graph that provides a probabilistic classification of risk expertise to complement the expert clinical judgements
Developing a probabilistic graphical structure from a model of mental-health clinical risk expertise
Resumo:
This paper explores the process of developing a principled approach for translating a model of mental-health risk expertise into a probabilistic graphical structure. The Galatean Risk Screening Tool [1] is a psychological model for mental health risk assessment based on fuzzy sets. This paper details how the knowledge encapsulated in the psychological model was used to develop the structure of the probability graph by exploiting the semantics of the clinical expertise. These semantics are formalised by a detailed specification for an XML structure used to represent the expertise. The component parts were then mapped to equivalent probabilistic graphical structures such as Bayesian Belief Nets and Markov Random Fields to produce a composite chain graph that provides a probabilistic classification of risk expertise to complement the expert clinical judgements. © Springer-Verlag 2010.
Resumo:
This paper investigates neural network-based probabilistic decision support system to assess drivers' knowledge for the objective of developing a renewal policy of driving licences. The probabilistic model correlates drivers' demographic data to their results in a simulated written driving exam (SWDE). The probabilistic decision support system classifies drivers' into two groups of passing and failing a SWDE. Knowledge assessment of drivers within a probabilistic framework allows quantifying and incorporating uncertainty information into the decision-making system. The results obtained in a Jordanian case study indicate that the performance of the probabilistic decision support systems is more reliable than conventional deterministic decision support systems. Implications of the proposed probabilistic decision support systems on the renewing of the driving licences decision and the possibility of including extra assessment methods are discussed.
Resumo:
Cloud computing is a new technological paradigm offering computing infrastructure, software and platforms as a pay-as-you-go, subscription-based service. Many potential customers of cloud services require essential cost assessments to be undertaken before transitioning to the cloud. Current assessment techniques are imprecise as they rely on simplified specifications of resource requirements that fail to account for probabilistic variations in usage. In this paper, we address these problems and propose a new probabilistic pattern modelling (PPM) approach to cloud costing and resource usage verification. Our approach is based on a concise expression of probabilistic resource usage patterns translated to Markov decision processes (MDPs). Key costing and usage queries are identified and expressed in a probabilistic variant of temporal logic and calculated to a high degree of precision using quantitative verification techniques. The PPM cost assessment approach has been implemented as a Java library and validated with a case study and scalability experiments. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Pesticide monitoring in St. Lucie County by various local, state and federal agencies has indicated consistent residues of several pesticides, including ethion and bromacil. Although pesticides have long been known to pose a threat to non-target species and much background monitoring has been done, no pesticide aquatic risk assessment has been done in this geographical area. Several recognized United States Environmental Protection Agency (USEPA) methods of quantifying risk are employed here to include hazard quotients (HQ) and probabilistic modeling with sensitivity analysis. These methods are employed to characterize potential impacts to aquatic biota of the C-25 Canal and the Indian River Lagoon (in St. Lucie County, Florida) based on current agricultural pesticide use and drainage patterns. The model used in the analysis incorporates available physical-chemical property data, local hydrology, ecosystem information, and pesticide use practices. HQ's, probabilistic distributions, and field sample analyses resulted in high levels of concern (LOCs), which usually indicates a need for regulatory action, including restrictions on use, or cancellation. ^
Resumo:
Formation of hydrates is one of the major flow assurance problems faced by the oil and gas industry. Hydrates tend to form in natural gas pipelines with the presence of water and favorable temperature and pressure conditions, generally low temperatures and corresponding high pressures. Agglomeration of hydrates can result in blockage of flowlines and equipment, which can be time consuming to remove in subsea equipment and cause safety issues. Natural gas pipelines are more susceptible to burst and explosion owing to hydrate plugging. Therefore, a rigorous risk-assessment related to hydrate formation is required, which assists in preventing hydrate blockage and ensuring equipment integrity. This thesis presents a novel methodology to assess the probability of hydrate formation and presents a risk-based approach to determine the parameters of winterization schemes to avoid hydrate formation in natural gas pipelines operating in Arctic conditions. It also presents a lab-scale multiphase flow loop to study the effects of geometric and hydrodynamic parameters on hydrate formation and discusses the effects of geometric and hydrodynamic parameters on multiphase development length of a pipeline. Therefore, this study substantially contributes to the assessment of probability of hydrate formation and the decision making process of winterization strategies to prevent hydrate formation in Arctic conditions.
Resumo:
The importance of non-destructive techniques (NDT) in structural health monitoring programmes is being critically felt in the recent times. The quality of the measured data, often affected by various environmental conditions can be a guiding factor in terms usefulness and prediction efficiencies of the various detection and monitoring methods used in this regard. Often, a preprocessing of the acquired data in relation to the affecting environmental parameters can improve the information quality and lead towards a significantly more efficient and correct prediction process. The improvement can be directly related to the final decision making policy about a structure or a network of structures and is compatible with general probabilistic frameworks of such assessment and decision making programmes. This paper considers a preprocessing technique employed for an image analysis based structural health monitoring methodology to identify sub-marine pitting corrosion in the presence of variable luminosity, contrast and noise affecting the quality of images. A preprocessing of the gray-level threshold of the various images is observed to bring about a significant improvement in terms of damage detection as compared to an automatically computed gray-level threshold. The case dependent adjustments of the threshold enable to obtain the best possible information from an existing image. The corresponding improvements are observed in a qualitative manner in the present study.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Markov Chain analysis was recently proposed to assess the time scales and preferential pathways into biological or physical networks by computing residence time, first passage time, rates of transfer between nodes and number of passages in a node. We propose to adapt an algorithm already published for simple systems to physical systems described with a high resolution hydrodynamic model. The method is applied to bays and estuaries on the Eastern Coast of Canada for their interest in shellfish aquaculture. Current velocities have been computed by using a 2 dimensional grid of elements and circulation patterns were summarized by averaging Eulerian flows between adjacent elements. Flows and volumes allow computing probabilities of transition between elements and to assess the average time needed by virtual particles to move from one element to another, the rate of transfer between two elements, and the average residence time of each system. We also combined transfer rates and times to assess the main pathways of virtual particles released in farmed areas and the potential influence of farmed areas on other areas. We suggest that Markov chain is complementary to other sets of ecological indicators proposed to analyse the interactions between farmed areas - e.g. depletion index, carrying capacity assessment. Markov Chain has several advantages with respect to the estimation of connectivity between pair of sites. It makes possible to estimate transfer rates and times at once in a very quick and efficient way, without the need to perform long term simulations of particle or tracer concentration.
Resumo:
Historically, the health risk of mycotoxins had been evaluated on the basis of single-chemical and single-exposure pathway scenarios. However, the co-contamination of foodstuffs with these compounds is being reported at an increasing rate and a multiple-exposure scenario for humans and vulnerable population groups as children is urgently needed. Cereals are among the first solid foods eaten by child and thus constitute an important food group of their diet. Few data are available relatively to early stages child´s exposure to mycotoxins through consumption of cereal-based foods. The present study aims to perform the cumulative risk assessment of mycotoxins present in a set of cereal-based foods including breakfast cereals (BC), processed cereal-based foods (PCBF) and biscuits (BT), consumed by children (1 to 3 years old, n=75) from Lisbon region, Portugal. Children food consumption and occurrence of 12 mycotoxins (aflatoxins, ochratoxin A, fumonisins and trichothecenes) in cereal-based foods were combined to estimate the mycotoxin daily intake, using deterministic and probabilistic approaches. Different strategies were used to treat the left censored data. For aflatoxins, as carcinogenic compounds, the margin of exposure (MoE) was calculated as a ratio of BMDL (benchmark dose lower confidence limit) and aflatoxin daily exposure. For the remaining mycotoxins, the output of exposure was compared to the dose reference values (TDI) in order to calculate the hazard quotients (HQ, ratio between exposure and a reference dose). The concentration addition (CA) concept was used for the cumulative risk assessment of multiple mycotoxins. The combined margin of exposure (MoET) and the hazard index (HI) were calculated for aflatoxins and the remaining mycotoxins, respectively. Main results revealed a significant health concern related to aflatoxins and especially aflatoxin M1 exposure according to the MoET and MoE values (below 10000), respectively. HQ and HI values for the remaining mycotoxins were below 1, revealing a low concern from a public health point of view. These are the first results on cumulative risk assessment of multiple mycotoxins present in cereal-based foods consumed by children. Considering the present results, more research studies are needed to provide the governmental regulatory bodies with data to develop an approach that contemplate the human exposure and, particularly, children, to multiple mycotoxins in food. The last issue is particularly important considering the potential synergistic effects that could occur between mycotoxins and its potential impact on human and, mainly, children health.
Resumo:
It is nowadays recognized that the risk of human co-exposure to multiple mycotoxins is real. In the last years, a number of studies have approached the issue of co-exposure and the best way to develop a more precise and realistic assessment. Likewise, the growing concern about the combined effects of mycotoxins and their potential impact on human health has been reflected by the increasing number of toxicological studies on the combined toxicity of these compounds. Nevertheless, risk assessment of these toxins, still follows the conventional paradigm of single exposure and single effects, incorporating only the possibility of additivity but not taking into account the complex dynamics associated to interactions between different mycotoxins or between mycotoxins and other food contaminants. Considering that risk assessment is intimately related to the establishment of regulatory guidelines, once the risk assessment is completed, an effort to reduce or manage the risk should be followed to protect public health. Risk assessment of combined human exposure to multiple mycotoxins thus poses several challenges to scientists, risk assessors and risk managers and opens new avenues for research. This presentation aims to give an overview of the different challenges posed by the likelihood of human co-exposure to mycotoxins and the possibility of interactive effects occurring after absorption, towards knowledge generation to support a more accurate human risk assessment and risk management. For this purpose, a physiologically-based framework that includes knowledge on the bioaccessibility, toxicokinetics and toxicodynamics of multiple toxins is proposed. Regarding exposure assessment, the need of harmonized food consumption data, availability of multianalyte methods for mycotoxin quantification, management of left-censored data and use of probabilistic models will be highlight, in order to develop a more precise and realistic exposure assessment. On the other hand, the application of predictive mathematical models to estimate mycotoxins’ combined effects from in vitro toxicity studies will be also discussed. Results from a recent Portuguese project aimed at exploring the toxic effects of mixtures of mycotoxins in infant foods and their potential health impact will be presented as a case study, illustrating the different aspects of risk assessment highlighted in this presentation. Further studies on hazard and exposure assessment of multiple mycotoxins, using harmonized approaches and methodologies, will be crucial towards an improvement in data quality and contributing to holistic risk assessment and risk management strategies for multiple mycotoxins in foodstuffs.
Resumo:
People, animals and the environment can be exposed to multiple chemicals at once from a variety of sources, but current risk assessment is usually carried out based on one chemical substance at a time. In human health risk assessment, ingestion of food is considered a major route of exposure to many contaminants, namely mycotoxins, a wide group of fungal secondary metabolites that are known to potentially cause toxicity and carcinogenic outcomes. Mycotoxins are commonly found in a variety of foods including those intended for consumption by infants and young children and have been found in processed cereal-based foods available in the Portuguese market. The use of mathematical models, including probabilistic approaches using Monte Carlo simulations, constitutes a prominent issue in human health risk assessment in general and in mycotoxins exposure assessment in particular. The present study aims to characterize, for the first time, the risk associated with the exposure of Portuguese children to single and multiple mycotoxins present in processed cereal-based foods (CBF). Portuguese children (0-3 years old) food consumption data (n=103) were collected using a 3 days food diary. Contamination data concerned the quantification of 12 mycotoxins (aflatoxins, ochratoxin A, fumonisins and trichothecenes) were evaluated in 20 CBF samples marketed in 2014 and 2015 in Lisbon; samples were analyzed by HPLC-FLD, LC-MS/MS and GC-MS. Daily exposure of children to mycotoxins was performed using deterministic and probabilistic approaches. Different strategies were used to treat the left censored data. For aflatoxins, as carcinogenic compounds, the margin of exposure (MoE) was calculated as a ratio of BMDL (benchmark dose lower confidence limit) to the aflatoxin exposure. The magnitude of the MoE gives an indication of the risk level. For the remaining mycotoxins, the output of exposure was compared to the dose reference values (TDI) in order to calculate the hazard quotients (ratio between exposure and a reference dose, HQ). For the cumulative risk assessment of multiple mycotoxins, the concentration addition (CA) concept was used. The combined margin of exposure (MoET) and the hazard index (HI) were calculated for aflatoxins and the remaining mycotoxins, respectively. 71% of CBF analyzed samples were contaminated with mycotoxins (with values below the legal limits) and approximately 56% of the studied children consumed CBF at least once in these 3 days. Preliminary results showed that children exposure to single mycotoxins present in CBF were below the TDI. Aflatoxins MoE and MoET revealed a reduced potential risk by exposure through consumption of CBF (with values around 10000 or more). HQ and HI values for the remaining mycotoxins were below 1. Children are a particularly vulnerable population group to food contaminants and the present results point out an urgent need to establish legal limits and control strategies regarding the presence of multiple mycotoxins in children foods in order to protect their health. The development of packaging materials with antifungal properties is a possible solution to control the growth of moulds and consequently to reduce mycotoxin production, contributing to guarantee the quality and safety of foods intended for children consumption.
Resumo:
Humans can be exposed to multiple chemicals at once from a variety of sources, and human risk assessment of multiple chemicals poses several challenges to scientists, risk assessors and risk managers. Ingestion of food is considered a major route of exposure to many contaminants, namely mycotoxins, especially for vulnerable population groups, as children. A lack of sufficient data regarding mycotoxins children risk assessment, could contribute to an inaccuracy of the estimated risk. Efforts must be undertaken to develop initiatives that promote a broad overview of multiple mycotoxins risk assessment. The present work, developed within the MYCOMIX project, aims to assess the risk associated to the exposure of Portuguese children (< 3 years old) to multiple mycotoxins through consumption of foods primarily marketed for this age group. A holistic approach was developed applying deterministic and probabilistic tools to the calculation of mycotoxin daily intake values, integrating children food consumption (3-days food diary), mycotoxins occurrence (HPLC-UV, HPLC-FD, LC-MS/MS and GC-MS), bioaccessibility (standardized in vitro digestion model) and toxicological data (in vitro evaluation of cytotoxicity, genotoxicity and intestinal impact). A case study concerning Portuguese children exposure to patulin (PAT) and ochratoxin A (OTA), two mycotoxins co-occurring in processed cereal-based foods (PCBF) marketed in Portugal, was developed. Main results showed that there is low concern from a public health point of view relatively to PAT and OTA Portuguese children exposure through consumption of PCBF, considering the estimated daily intakes of these two mycotoxins (worst case scenarios, 22.930 ng/kg bw/day and 0.402 ng/kg bw/day, for PAT and OTA, respectively), their bioaccessibility and toxicology results. However, the present case study only concerns the risk associated with the consumption of PCBF and child diet include several other foods. The present work underlines the need to adopt a holistic approach for multiple mycotoxins risk assessment integrating data from exposure, bioacessibility and toxicity domains in order to contribute to a more accurate risk assessment.