855 resultados para Principle Component Analysis (PCA)
Resumo:
Principal component analysis phase shifting (PCA) is a useful tool for fringe pattern demodulation in phase shifting interferometry. The PCA has no restrictions on background intensity or fringe modulation, and it is a self-calibrating phase sampling algorithm (PSA). Moreover, the technique is well suited for analyzing arbitrary sets of phase-shifted interferograms due to its low computational cost. In this work, we have adapted the standard phase shifting algorithm based on the PCA to the particular case of photoelastic fringe patterns. Compared with conventional PSAs used in photoelasticity, the PCA method does not need calibrated phase steps and, given that it can deal with an arbitrary number of images, it presents good noise rejection properties, even for complicated cases such as low order isochromatic photoelastic patterns. © 2016 Optical Society of America.
Resumo:
In Statnotes 24 and 25, multiple linear regression, a statistical method that examines the relationship between a single dependent variable (Y) and two or more independent variables (X), was described. The principle objective of such an analysis was to determine which of the X variables had a significant influence on Y and to construct an equation that predicts Y from the X variables. ‘Principal components analysis’ (PCA) and ‘factor analysis’ (FA) are also methods of examining the relationships between different variables but they differ from multiple regression in that no distinction is made between the dependent and independent variables, all variables being essentially treated the same. Originally, PCA and FA were regarded as distinct methods but in recent times they have been combined into a single analysis, PCA often being the first stage of a FA. The basic objective of a PCA/FA is to examine the relationships between the variables or the ‘structure’ of the variables and to determine whether these relationships can be explained by a smaller number of ‘factors’. This statnote describes the use of PCA/FA in the analysis of the differences between the DNA profiles of different MRSA strains introduced in Statnote 26.
Resumo:
Rhizome of cassava plants (Manihot esculenta Crantz) was catalytically pyrolysed at 500 °C using analytical pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) method in order to investigate the relative effect of various catalysts on pyrolysis products. Selected catalysts expected to affect bio-oil properties were used in this study. These include zeolites and related materials (ZSM-5, Al-MCM-41 and Al-MSU-F type), metal oxides (zinc oxide, zirconium (IV) oxide, cerium (IV) oxide and copper chromite) catalysts, proprietary commercial catalysts (Criterion-534 and alumina-stabilised ceria-MI-575) and natural catalysts (slate, char and ashes derived from char and biomass). The pyrolysis product distributions were monitored using models in principal components analysis (PCA) technique. The results showed that the zeolites, proprietary commercial catalysts, copper chromite and biomass-derived ash were selective to the reduction of most oxygenated lignin derivatives. The use of ZSM-5, Criterion-534 and Al-MSU-F catalysts enhanced the formation of aromatic hydrocarbons and phenols. No single catalyst was found to selectively reduce all carbonyl products. Instead, most of the carbonyl compounds containing hydroxyl group were reduced by zeolite and related materials, proprietary catalysts and copper chromite. The PCA model for carboxylic acids showed that zeolite ZSM-5 and Al-MSU-F tend to produce significant amounts of acetic and formic acids.